
Exploiting Semantic Search and Object-Oriented Programming to
Ease Multimodal Interface Development

Thibaut Septon
thibaut.septon@unamur.be

Université de Namur
Namur Digital Institute

Namur, Belgium

Santiago
Villarreal-Narvaez

santiago.villarreal@unamur.be
Université de Namur

Namur Digital Institute
Namur, Belgium

Xavier Devroey
xavier.devroey@unamur.be

Université de Namur
Namur Digital Institute

Namur, Belgium

Bruno Dumas
bruno.dumas@unamur.be

Université de Namur
Namur Digital Institute

Namur, Belgium

ABSTRACT
Multimodal interaction has been adopted across various platforms
and devices, with supporting tools enhancing the developer ex-
perience in developing Multimodal Interfaces (MMI). While tradi-
tionally, these tools faced challenges balancing expressiveness and
usability, recent progress in Natural Language Processing tends to
mitigate this rule. However, adding multimodal interaction still re-
mains challenging, especially when integrating the voice modality,
and MMIs remain to be better integrated into today’s applications.
To address these challenges, we introduce a Unity tool-based sys-
tem named Ummi. Ummi allows developers to use their knowledge
in Object-Oriented Programming to handle the expert knowledge
required to create a MMI while allowing end users great flexibility
in the natural language they can use to interact. Our contributions
are: 1) the presentation of Ummi’s architecture and its inherent
concepts along with its open-source implementation, and 2) a suc-
cessful evaluation of its usability for describing MMIs through the
System Usability Scale questionnaire with twelve participants.

CCS CONCEPTS
• Human-centered computing → User interface toolkits; •
Software and its engineering→ Object oriented frameworks.

KEYWORDS
Multimodal Interaction, Multimodal Interfaces, Fusion Engine Ar-
chitecture

ACM Reference Format:
Thibaut Septon, Santiago Villarreal-Narvaez, Xavier Devroey, and Bruno
Dumas. 2024. Exploiting Semantic Search and Object-Oriented Program-
ming to Ease Multimodal Interface Development. In Companion of the 16th
ACM SIGCHI Symposium on Engineering Interactive Computing Systems
(EICS Companion ’24), June 24–28, 2024, Cagliari, Italy. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3660515.3664244

1 INTRODUCTION
Multimodal interaction tries to leverage human communication
capabilities by using multiple modalities, such as speech, gestures,

EICS Companion ’24, June 24–28, 2024, Cagliari, Italy
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use.
Not for redistribution. The definitive Version of Record was published in Companion
of the 16th ACM SIGCHI Symposium on Engineering Interactive Computing Systems
(EICS Companion ’24), June 24–28, 2024, Cagliari, Italy, https://doi.org/10.1145/3660515.
3664244.

or facial expressions, to let users interact more naturally and ef-
ficiently with a machine [13, 21, 27]. Research has demonstrated
numerous advantages of Multimodal Interfaces (MMI). These inter-
faces can stimulate human cognition, are less prone to user error,
and adapt to different environments and diverse users. Additionally,
integrating multiple modalities makes these interfaces more robust
and accurate [13, 21]. MMI has been adopted through various sys-
tems, such as Extended Reality Headsets, Smartphones [19, 21], etc.
Several tools have been developed to help designers and develop-
ers abstract the fusion of different modalities (i.e., extracting user
intent through the various modalities). However, when designing
multimodal interaction fusion engine tools, researchers need to
find a trade-off between the tool’s usability (easier for humans)
and its expressiveness (easier for machines) [14]. While recent ad-
vances in Natural Language Processing (NLP) seem to bridge the
gap between these two qualities when integrating the voice modal-
ity, it remains challenging to create MMIs [18, 23]. As the need
for multimodal interaction expands, developers and designers face
increasing difficulty in prototyping and developing MMIs.

We present Ummi1, an open-source Unity tool tailored to create
speech-centric multimodal interaction. Ummi allows developers to
add multimodal commands easily into their applications using only
basic Object-Oriented Programming (OO Programming) knowledge
while using a state-of-the-art semantic search technique to conceal
the expertise needed to make such interfaces. Moreover, it hugely
reduces the work required to develop a MMI while allowing great
flexibility in the end user’s natural language. As the developer
experience provided by software ultimately affects its adoption
by developers, we also conducted a successful study with twelve
participants to determine Ummi’s usability score using the System
Usability Scale (SUS) questionnaire [5].

Although research on offline multimodal fusion is actively pur-
sued within the machine learning community, this work does not
tackle the same challenges. Indeed, while offline multimodal fu-
sion aims to analyze data, online multimodal fusion aims to enable
human-machine communication. Thus, the considerations are not
the same as the fusion needs to happen in a time and sometimes
resource-constrained environment. Our contributions are the fol-
lowing: 1) Ummi, an early stage open-source multimodal engine
toolkit realized for Unity that allows for usable, integrated, and ex-
pressive speech-centric MMI description, 2) A validation of Ummi’s
usability for declaring MMIs.

1https://github.com/tsepton/ummi

https://orcid.org/0000-0003-0106-0817
https://orcid.org/0000-0001-7195-1637
https://orcid.org/0000-0001-7195-1637
https://orcid.org/0000-0002-0831-7606
https://orcid.org/0000-0001-5302-4303
https://doi.org/10.1145/3660515.3664244
https://doi.org/10.1145/3660515.3664244
https://doi.org/10.1145/3660515.3664244
https://github.com/tsepton/ummi

EICS Companion ’24, June 24–28, 2024, Cagliari, Italy T. Septon et al.

Figure 1: Trade-off between usability and expressiveness for
modeling MMI, adapted from [14].

2 BACKGROUND AND RELATEDWORK
One of the first works to describe a MMI is the put-that-there
application from Bolt [2] in 1980. In this pioneering work, users
can interact with the system using a deictic language (i.e., where
words have different meanings, depending on the current situation,
e.g., here and there) and a pointing device. Since then, the field of
Human-Computer Interaction (HCI) has long studied how multi-
modal interaction can be improved with key works such as the
CARE properties [8], a framework to design multimodal systems,
the ten myths of multimodal interaction [20], that deconstructs
preconceived ideas about multimodal interactive systems, or the
multimodal man-machine interaction loop [13]. However, despite
the amount of work in the field, designing a MMI remains diffi-
cult as it demands a significant amount of work [23] and requires
developers to handle the difficulty of multimodal fusion while main-
taining control over the app’s behavior [18]. Researchers have long
worked to make the task easier, and as such, multiple tools have
been created.

2.1 Fusion Engine Tools
There are a few specific examples that are noteworthy for the
historical development of fusion engine tools: Bourguet proposes a
graphical tool [4] named IMBuilder that uses a finite state machine
to describe MMI and its attached fusion engine MEngine that
dispatches events to the application, which proceeds to evaluate
them. Cuenca et al. [9] use a similar approach with Hasselt UIMS
but define their User Interface Description Language (UIDL), which
permits the definition of atomic events (i.e., events coming from
one modality) and the use of operators to compose them. Dumas et
al. have developed HephaisTK [14], a graphical editor that uses
SMUIML [11], an XML-based UIDL, to describe event-based MMIs
and allow reacting to these events. The OpenInterface Framework
[25] and its predecessor ICARE [3] created a component-based
generic architecture, the idea being that components can be reused
and linked together to prototype MMIs. Hoste et al. have proposed
the Mudra Framework [17]. As previous multimodal architectures
suffered from the wide variety of data highly linked to the different
modalities, their solution allows for the centralization of any data
representation from all modalities inside a centralized fact base,
which serves for the fusion.

However, despite the growing number of tools to ease the de-
velopment of MMI, these always offer a trade-off between their
expressiveness and the usability they offer developers [14] (see
Figure 1). This is especially true for the solutions that integrate
the voice modality, as the developers have to choose between its
expressiveness through verbosity (i.e., being exhaustive on the sen-
tences the end users can employ), reducing the tool’s usability, or
keeping higher usability by reducing the modality expressiveness,
thus restricting the language their end users can use, resulting in
less natural communication.

In recent years, significant advancements in Large Language
Model (LLM) and Natural Language Processing (NLP) solutions
have greatly benefited multimodal interaction tools, as they allow
to better understand users spoken language. These breakthroughs
have made integrating and customizing the voice modality easier
while providing better experiences for developers and users. One
such tool is Geno [23], an IDE-based solution that uses NLP to
integrate speech into web applications. It allows developers to add
voice and GUI input in unimodal or multimodal interaction to ex-
isting web applications without requiring any knowledge of NLP.
Geno asks developers to provide example utterances and label po-
tential parameters within them. It then classifies users’ utterances
using an intent classifier model and executes the linked commands
if the match is good enough. Another recent work by Li et al. is
ReactGenie [18], a complete framework that aims to simplify the
adoption of multimodal interaction within GUI applications. The
framework delivers a programming experience comparable to cur-
rent GUI frameworks, optimizes the utilization of pre-existing GUI
code, and empowers developers to maintain complete control over
the UI’s appearance and app behavior through Object-Oriented
(OO) state abstraction. While most of the older solutions previ-
ously cited [3, 4, 9, 11, 14, 25] were never widely adopted, partly
because of the development workload imposed on their users, it
remains to be seen whether Geno’s or ReactGenie’s approach will
be successful.

As our objective is to enhance the accessibility of multimodal
interaction for developers, we think that learning a dedicated frame-
work (such as for ReactGenie [18]) or relying on a dedicated IDE
(such as for Geno [23]) might not be optimal as it requires de-
velopers to learn these tools, and do not integrate within current
development technologies, inducing increased context-switching
resulting in an additional cognitive load [6, 7]. In reaction, we intro-
duce Ummi, a Unity tool developers can integrate into their projects
to build MMIs. A distinctive feature of Ummi lies in its compatibility
with Unity’s development workflow, offering a seamless integration
experience. This approach contrasts with the one taken by React-
Genie [18], where the integration of React and Redux is replicated
rather than complemented.

3 UMMI FUSION ENGINE
In this Section, we introduce Ummi, a toolkit for easier speech-
centric MMI development for Unity. We first demonstrate how our
tool works, then describe its architecture and how it integrates
the voice modality, and finish with what this multimodal fusion
approach offers.

3.1 Prototyping with Ummi
AsUmmi is designed to be integratedwithin Unity, it uses the C#OO
paradigm to abstract modalities’ data and model the multimodal
interaction. As such, to specify a MMI using Ummi, developers
extend a “MonoBehaviour” extended class called “MMInterface”
(see Listing 1 line 5), implement the “MonoBehaviour” inherited
lifecycle method “Start” (see Listing 1 line 6) to reference user
actions and reference the “MMInterface” to an imported prefab

Exploiting Semantic Search and Object-Oriented Programming EICS Companion ’24, June 24–28, 2024, Cagliari, Italy

1 us ing ummi . Runtime ;
2 us ing Ummi . Runtime . P a r s e r ;
3 u s ing Uni tyEng ine ;
4
5 p u b l i c c l a s s MMInterfaceExample : MMInter face {
6 p u b l i c o v e r r i d e vo id S t a r t () {
7 Use rAc t i on s . Add (t yp eo f (Pu tTha tThereAc t i ons)) ;
8 }
9
10 p u b l i c s t a t i c c l a s s Pu tTha tThereAc t i ons {
11 [Use rAc t ion (" Crea t e a cube t h e r e ")]
12 p u b l i c s t a t i c vo id CreateCubeThere (Vec to r3 t h e r e) {
13 GameObject go =

GameObject . C r e a t e P r im i t i v e (P r im i t i v eType . Cube) ;
14 go . t r an s f o rm . p o s i t i o n = t h e r e ;
15 }
16
17 [Use rAc t ion (" Put t h a t t h e r e ")]
18 p u b l i c s t a t i c vo id PutThatThere (GameObject tha t , Vec to r3

t h e r e) {
19 t h a t . t r an s f o rm . p o s i t i o n = t h e r e ;
20 }
21 }
22 }

Listing 1: Writing the typical Put-that-there using Ummi.

from the tool. If a developer wants to implement Bolt’s put-that-
there example [2], the code would be somewhat similar to Listing
1.

Ummi’s approach to describing an interface is to write high-level
actions that a user should be capable of doing. These actions are
currently implemented using static methods regrouped inside a
static class of an interface (see Listing 1 line 10). Developers specify
what these methods need as parameters and write their bodies
as usual. They then have to specify, using the “UserAction” prop-
erty attribute, one or more typical sentences a user should be able
to pronounce to invoke these actions (see Listing 1 lines 11 and
17). A single sentence should adequately enable Ummi to permit
application users to employ similar sentences without requiring
exhaustive details from the developer. As illustrated in Listing 1,
the parameters of the methods are complementary to the exam-
ple sentence and usually represent objects referenced with other
modalities during the utterance of such a phrase.

3.2 Modalities Representation
Some previously developed tools allow the interaction to be de-
signed directly by modeling events from the modalities. We believe
this approach unnecessarily burdens developers, as they must con-
sider all possible combinations of modalities to achieve a more
natural language, trading usability for expressiveness. With Ummi,
developers specify only the data needed to perform an action, leav-
ing it up to the engine to use the best modality as they are often
redundant [12]. Ummi employs OO Programming to create seman-
tic representations of events from various modalities. As a result, in
the put-that-there scenario (see Listing 1), developers do not need
to specify all the modalities that could emit space-related data but
instead indicate that they require space-related data. Ummi uses
the architecture depicted in Figure 2 to use OO as an abstraction.

As Ummi needs to instantiate objects from modalities (Figure
2.1), the tool uses mediator scripts called modalities processors
(Figure 2.2). Any added processor is in charge of interpreting a

Voice

Modalities

Controller

...

Hands

Gaze

1 Processors

Deictic

...

Speech-to-text

2

Interfaces

Embeddings

Methods Factbase

Fusion Engine

Method
Inference reads

Parameters inference

Transformer
model

3

re
ad

s

Method invokation

Figure 2: Ummi’s simplified architecture: The blue arrow
represents the data transformation flow from an utterance
to its corresponding method, while the yellow arrow stands
for the modalities processors mapping data into objects and
writing them into the fact base.

modality by mapping its data into meaningful objects. For instance,
matching a controller pointing in a direction to the instance of
a class representing a three-dimensional ray. It should be noted
that a processor can access multiple modalities at once to emit
objects. Developers can either use the default provided processors
or write their own, as it allows them to control how a modality
should behave and integrate new modalities. To write a modality
processor, developers can inherit the “Processor” abstract class, write
the internal logic highly coupled to the modality and its input
device, and call the “WriteFact” method to tell Ummi a modality
event happened. An example processor for the mouse, provided by
default with Ummi, is visible on Listing 2.

To centralize these objects, Ummi’s MUDRA-inspired [17] ar-
chitecture (see Figure 2) allows processors to append modalities
instantiated objects to a data structure called the fact base. Its role is
to centralize any processor-instantiated objects and to make them
available to the Fusion Engine (Figure 2.3). The latter is the part of
Ummi responsible for handling the multimodal fusion.

3.3 Speech-Centric Fusion
Ummi’s fusion engine (Figure 2.3) can be decomposed into two
different steps. The first is its ability to compare users’ command
utterances with the registered actions sentence examples (see List-
ing 1) and find the most appropriate method to be invoked. For the
second, once the method has been found, the engine tries to fill in
eventual parameters using simultaneous modalities events before
invoking the method. If no method is found, Ummi stops the fusion.

EICS Companion ’24, June 24–28, 2024, Cagliari, Italy T. Septon et al.

1 us ing Uni tyEng ine ;
2
3 namespace ummi . Runtime . P r o c e s s o r s {
4 p u b l i c c l a s s MouseProcessor : P r o c e s s o r {
5 p r i v a t e vo id Update () {
6 i f (I s C l i c k e d ()) OnCl ick (InputToRay ()) ;
7 }
8
9 p r i v a t e vo id OnClick (Ray ray) {
10 i f (Camera . main i s n u l l) r e t u r n ;
11 i n t sequence ID = Time . frameCount ;
12 Wr i t e F a c t (ray , sequence ID) ;
13 i f (Phy s i c s . Rayca s t (ray , out Ray c a s tH i t h i t , 2 5 0)) {
14 Wr i t e F a c t (h i t . c o l l i d e r . gameObject , sequence ID) ;
15 Wr i t e F a c t (h i t . po in t , sequence ID) ;
16 }
17 }
18
19 p r o t e c t e d boo l I s C l i c k e d () {
20 r e t u r n

Inpu t . GetMouseButtonDown ((i n t) MouseButton . L e f t C l i c k) ;
21 }
22
23 p r o t e c t e d Ray InputToRay () {
24 r e t u r n

Camera . main ! . Sc reenPo in tToRay (Inpu t . mousePos i t i on) ;
25 }
26 }
27 }

Listing 2: An example implementation for amouse processor,
mapping clicks to Vector3, Ray and GameObject instances.

3.3.1 Finding the Most Appropriate Action. To compare user utter-
ances with the actions provided by the developers (see Listing 1),
Ummi uses a semantic search technique. With recent research in
NLP, we saw the development of the BERT architecture [10]. Such
models can compare sentences but are slow, as two sentences need
to be forwarded simultaneously inside the model to be compared.
To counter this, Reimers and Gurevych’s [22] Sentence-Bert archi-
tecture maps each input (i.e., sentence) into a vector space where
semantically similar sentences are close to one another. For Ummi’s
use case, this translates into transforming the actions sentences
provided by the developers into meaningful sentence representa-
tions (i.e., vectors) when the application using Ummi starts using a
pre-trained Sentence-Bert model. Then, when an end user wants to
perform an action with the system at runtime, they can formulate
their order appropriately using a deictic speech. Their utterance
is then transformed into a sentence representation (i.e., a vector)
using the same model as for the developer’s provided sentences.
Ummi can then perform the semantic search to retrieve the appro-
priate user action by computing the cosine similarities of the user
sentence representation with the developer’s provided sentence rep-
resentations. This approach allows Ummi to find the corresponding
closest method with no latency.

3.3.2 Completing Method Parameters. Once Ummi has found the
method to be invoked, it must first check if it has any parameters
to complete. If none, the method gets invoked. Otherwise, the en-
gine has to infer the method parameters based on their type. This
step reads the fact base to get previously instantiated objects from
modalities processors. The current implementation uses a meaning-
frame-based algorithm [28] that searches for the right objects by
first keeping only the ones emitted during the timespan that covers
the emission of the action by the user. The algorithm takes the first

object in the fact base for each required parameter, which respects
the required type. When iterating multiple times, any previously
chosen object gets removed from the list of potential completion
objects. This type-based fusion permits any type to be used within
a MMI method signature as long as a modality processor emits it.

3.4 Desired Outcomes and Advantages
Using this semantic search approach (described in Section 3.3.1) for
the fusion minimizes the required development time by relieving
developers of the need to provide an exhaustive list of all permitted
voice commands. This permits keeping a high expressiveness of the
voice modality (i.e., offering end users significant flexibility in the
natural language they can use) while keeping the tool’s required
verbosity at a minimum low, thus not reducing its usability.

Another advantage offered by Ummi’s architecture is its ability
to deconstruct MMI prototyping into two steps: the processing of
modalities (e.g., Listing 2) and the MMI description (e.g., Listing 1).
Such an approach permits leveraging the difficulty of writing MMIs
and conceals the knowledge needed behind basic OO Programming
concepts. We believe that modeling MMI through OO Program-
ming may ultimately benefit programmers, as it abstracts advanced
concepts related to the definition of MMIs under a well-known
paradigm, clearly separating the processing of modalities and its
inherent difficulties from the description of MMIs.

Decoupling the modalities from the MMIs description and its OO
data representation has other benefits. First, creating new types to
be handled by the Fusion Engine with no extra work on the fusion
side is possible. Second, adding a new modality into Ummi only
requires developers to write a new modality processor script to
map its raw data into meaningful objects and has no impact over
the already implemented MMIs. If the new modality emits objects
that can be used inside this MMI, it will be taken into account
automatically.

4 EVALUATION
This section describes the evaluation to assess Ummi’s usability for
describing speech-centric MMIs using the SUS questionnaire [5].
Participants are detailed, along with the evaluation itself. We then
give and develop the results obtained and discuss potential threats
to validity. A repository serving as part of this evaluation replication
package is available online2 and contains the data collected as well
as the evaluation setup.

4.1 Participants
Twelve participants (𝑁 = 12) voluntarily took part in the study
and did not receive any compensation. Eleven were between 20
and 25 years old, and one was between 26 and 30. All participants
were enrolled in a computer science Master’s degree, and the exper-
iment occurred within the context of a HCI course. The experiment
was not part of their course quotation. To understand the partici-
pants’ existing knowledge concerning MMI and their familiarity
with software engineering technologies, they were asked to rate
their familiarity level on a 5-point Likert scale ranging from “No
notion” to “Expert”: 𝑞1) “How familiar are you with multimodal
interfaces?”, 𝑞2) “How would you define your own experience in
2https://github.com/tsepton/ummi_usability

https://github.com/tsepton/ummi_usability

Exploiting Semantic Search and Object-Oriented Programming EICS Companion ’24, June 24–28, 2024, Cagliari, Italy

multimodal interface development?”, 𝑞3) “How familiar are you
with Object-Oriented programming?”, 𝑞4) “How familiar are you
with strongly typed languages?”, 𝑞5) “How familiar are you with
the C# language?”. Results show 67% were novice familiar with mul-
timodal interfaces, and 50% had no prior experience. On the other
hand, 50% of the participants felt proficient in object-oriented pro-
gramming and strongly typed languages. When it came to the C#
language, an equal number of participants (25%) were intermediates,
proficients, or had no notion.

4.2 Setup
The experiment occurred across two sessions, with a one-week
gap between them. The first session lasted for 40 minutes. It was
dedicated to providing an overview of the challenges associated
with designing MMIs and introduced Ummi’s approach using the
“put-that-there” example (same as seen in Listing 1). The session
ended with the participants installing the necessary dependencies
for the experiment on their computers. The second session took
place the next week and lasted approximately 60 minutes. It was
dedicated to the experiment itself. We began with a quick reminder
of the content seen during the first session. Participants were given
access to the experiment folder of the repository given above for
the trial. All participants used Visual Studio Code, with the official
C# Dev Kit extension, to get feedback from the IDE. The choice
was not to use Unity with Ummi’s real implementation for multiple
reasons, all of which are discussed inside Section 4.4. Therefore, a
mockup of Ummi was designed specifically for the experiment3.

Participants were responsible for describing a MMI for an on-
line sales Augmented Reality application. Their solution aims to
visualize decorative items and other furniture directly at the user’s
location. The participants were then assigned the task of imple-
menting an interface using Ummi (omitting the methods’ body as
they are not related to the declaration of the MMI and as they re-
quire Unity-related knowledge), that would allow users to perform
the following actions: Display a menu to list the available items for
sale, hide it, sort the items within the menu by name or by price,
add a menu item to a given position inside the environment, invert
the position of two environment items, move an environment item
from one place to another, and delete an item from the environment.
Finally, they were told that processors would be implemented by
someone else. Still, the expected types they had at their disposal
were the following: “Sort, “SortByPrice” and “SortByName” which
extend “Sort”, “Item” which represents any piece of furniture, and
“Vector3” which represents a point in space.

Participants then worked alone and had a maximum of 60 min-
utes to perform the task. They could run Ummi’s mockup implemen-
tation to get an output on what user actions were registered. Once
they felt they had succeeded, they asked the experiment conduc-
tor for confirmation, who checked that the interface was correctly
written and that all methods were correctly registered. Participants
were then asked to fill in an online anonymous form containing
the SUS questionnaire [5]. The SUS questionnaire was selected as it
applies to a wide range of systems [24], was designed to be simple
[5] and has proven to get reliable results even when applied to a
small sample of users (8-12) [26]. An open field was also included

3Note that the mockup implementation is available inside the replication package.

Figure 3: SUS questionnaire results.

to record the participants’ general feelings about the experience.
If the task were not correctly fulfilled, the experiment conductor
would tell the participants something was missing and that they
should reexamine the given documentation.

4.3 Results
All participants completed the task within 50 minutes, with six
finishing in under 30 minutes. The experiment gave an overall SUS
score of 71.67 for describing multimodal interfaces through Ummi.
Figure 3 shows the percentage of responses for each SUS question.
A common way to interpret SUS scores is to compare them to
others SUS scores using percentiles according to Sauro [24]. Any
SUS score is above average if > 68, and with an overall SUS score
of 71.67 (𝜎 = 23.19), Ummi is in the 60–64 percentile rank and is
considered good result according to Bangor et al. [1] adjectives scale.
The overall SUS score confirms the hypothesis that Ummi offers
good developer usability for integrating speech-centric multimodal
commands. Specifically, all participants except two expressed a
positive feeling towards Ummi and an above average SUS score
(except for 𝑃6, 𝑃8 and 𝑃9 with SUS scores of 65 (Fair), 20 (Awful)
and 32.5 (Poor) respectively).

While checking if the different participants correctly realized
the task, the experiment conductor took note of the problems that

EICS Companion ’24, June 24–28, 2024, Cagliari, Italy T. Septon et al.

occurred to the participants. First, one participant did not under-
stand the idea behind the “UserAction” annotation, as they filled
in the required string argument with the method’s name. Also, six
participants did not successfully register some actions, as they used
types not emitted by the processors detailed inside the instructions.
While they understood that the methods required arguments typed
as objects emitted by the processors, all of them tried to use an
“ICollection<T>” class from C# and used an accepted type as the
generic argument (e.g., “List<Item>”).

Results show that Ummi scored well for all questions except the
first one, where results are more mitigated: 4 participants did not
feel they would use the system frequently, while 4 neither disagreed
nor agreed. This may be explained by the lack of multimodal in-
teraction integration within current frameworks and libraries for
desktop and mobile applications. Otherwise, Ummi performs well,
with most participants (83%) finding the tool well integrated with-
out inconsistencies or added complexity. Also, 67% agreed that the
tool would be quick to learn to use, even though all participants
agreed that there are not a lot of things to learn to start writing
MMIs with Ummi.

4.4 Threats to Validity
One primary concern arises from employing students who are not
accustomed toMMI development and are not representative of more
advanced Unity developers. Nonetheless, utilizing students enabled
us to establish a participant sample with consistent knowledge
around using and creating MMI, allowing for meaningful compar-
isons. A second threat to validity may be related to the setup of the
development environment. However, the decision to use a mockup
environment for Ummi that did not rely on Unity is well-considered.
Indeed, as participants may not have known Unity, and as the ex-
periment was done to evaluate Ummi’s ability to describe MMIs,
discovering Unity for certain participants would have affected their
SUS score. Also, as Ummi is still a work in progress, and its perfor-
mances are still to be evaluated and improved, allowing participants
to trial and error would not have been an appropriate solution, as a
bad efficiency would inevitably have impacted the usability evalua-
tion. Finally, allowing more time for participants and removing the
presence of the experiment conductor could affect the experiment
outcomes.

5 LIMITATION AND FUTUREWORK
First, while this work defined Ummi’s way of declaring a MMI
and focused on evaluating its usability, it should be noted that it
is currently a prototype. In the near future, we will improve and
evaluate its expressiveness through OO modeling. Another future
work concerns the tool’s efficiency in realizing the correct user
action. As the fusion takes place in two stages (see Section 3.3),
we first aim to evaluate and improve the performance of the se-
mantic search before delving more into the parameters’ completion
algorithm. As for now, the frame-based algorithm used to complete
methods parameters (see Section 3.3.2) handles the fusion badly
when multiple objects correspond to the required parameter type
inside the fact base. Using another algorithm, such as Rete [16]
as it was proven to be efficient by Mudra [17], should overcome
the problem. Also, while the evaluation shows successful results,

it should be noted that the SUS questionnaire does not evaluate
the resulting interface, but only the usability of Ummi. The user
interfaces performance created with the tool is left to be evaluated.

Another future work is to be realized on the inner mechanism
behind the fusion. Indeed, a current limitation of Ummi is that
it is speech-centric: developers are only allowed to declare user
actions that are invokable using the speech modality. However, a
promising avenue for future research involves delving into mul-
timodal machine learning, specifically exploring how data from
other modalities can be transformed to be compared to text, as was
realized by Fink et al. [15] for instance, which would allow other
modalities to be used to find declared user actions. Also, while we
are currently working on evaluating its efficiency and dedicated to
improving it, this semantic search approach does not let end-users
compose actions together and thus restricts the natural language
they can use to interact with Ummi based applications.

Finally, while the Sentence-Bert models allow for quicker com-
parison of sentences at runtime than with a Bert architecture, this
does come at the price of performance loss. To overcome this, per-
forming an extra training step known as fine-tuning is common.
This lets the model gain extra knowledge for domain-specific tasks
and improves its ability to embed similar sentences closer to one
another. However, this step requires data, takes time, and is compu-
tationally intensive. While Ummi allows to easily change the model
used, it may not be possible to fine-tune the model in use, and thus,
the intended user experience may suffer from it. We are fully aware
of this and are exploring novel ways that do not require fine-tuning
the model with each new version of a MMI.

6 CONCLUSION
Multimodal Interfaces (MMI) are becoming increasingly popular
among users of different systems. As a result, developers and design-
ers are dedicating significant efforts to designing and developing
such interfaces [23], partly because it requires them to handle mul-
timodal fusion while maintaining control over the app’s behavior
[18]. In this regard, we presented an open-source Unity tool called
Ummi and its approach for easily creating speech-centric MMIs. Fig-
ure 2 simplifies how the modalities, processors, multimodal fusion,
and MMIs fit together. Finally, we conducted a study to validate
Ummi’s ability to describe MMI, and the results were positive. All
twelve participants successfully performed the given task, with a
mean SUS score of 71.67. 75% of the participants gave an above-
average SUS score (> 68), while 83.34% had an overall good opinion
of the tool.

ACKNOWLEDGMENTS
The authors of this paper would like to express their gratitude to the
participants of the usability studies. Likewise, we are very grateful
to the anonymous reviewers, whose suggestions helped improve
and clarify this manuscript. Authors are supported by the OPTIMIS
project by Pôle MecaTech under Grant no. 8564.

REFERENCES
[1] Aaron Bangor, Philip Kortum, and James Miller. 2009. Determining what indi-

vidual SUS scores mean: Adding an adjective rating scale. Journal of usability
studies 4, 3 (2009), 114–123.

https://www.polemecatech.be/fr/projets/optimis/
https://www.polemecatech.be/fr/projets/optimis/
https://www.polemecatech.be/fr/

Exploiting Semantic Search and Object-Oriented Programming EICS Companion ’24, June 24–28, 2024, Cagliari, Italy

[2] Richard A. Bolt. 1980. “Put-that-there”: Voice and gesture at the graphics interface.
SIGGRAPH Comput. Graph. 14, 3, 262–270. https://doi.org/10.1145/965105.807503

[3] Jullien Bouchet, Laurence Nigay, and Thierry Ganille. 2004. ICARE software
components for rapidly developing multimodal interfaces. In Proceedings of the
6th international conference on Multimodal interfaces. 251–258.

[4] Marie-Luce Bourguet. 2002. A toolkit for creating and testing multimodal inter-
face designs. companion proceedings of UIST 2 (2002), 29–30.

[5] John Brooke. 1996. Sus: a “quick and dirty’usability. Usability evaluation in
industry 189, 3 (1996), 189–194.

[6] Paul Chandler and John Sweller. 1992. The Split-Attention Effect as a Factor in
the Design of Instruction. British Journal of Educational Psychology 62, 2 (1992),
233–246. https://doi.org/10.1111/j.2044-8279.1992.tb01017.x

[7] G. Convertino, J. Chen, Y. Ryu, C. North, and B. Yost. 2003. Exploring Context
Switching and Cognition in Dual-View Coordinated Visualizations. In Interna-
tional Conference on Coordinated and Multiple Views in Exploratory Visualization.
IEEE, 55. https://doi.org/10.1109/CMV.2003.1215003

[8] Joëlle Coutaz, Laurence Nigay, Daniel Salber, Ann Blandford, Jon May, and
Richard M Young. 1995. Four easy pieces for assessing the usability of multimodal
interaction: the CARE properties. Human—Computer Interaction: Interact’95
(1995), 115–120.

[9] Fredy Cuenca, Jan Van den Bergh, Kris Luyten, and Karin Coninx. 2015. Hasselt
uims: a tool for describing multimodal interactions with composite events. In Pro-
ceedings of the 7th ACM SIGCHI Symposium on Engineering Interactive Computing
Systems. 226–229.

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[11] Bruno Dumas, Denis Lalanne, and Rolf Ingold. 2008. Prototyping multimodal
interfaces with the SMUIML modeling language. In CHI 2008 Workshop on User
Interface Description Languages for Next Generation User Interfaces, CHI.

[12] Bruno Dumas, Denis Lalanne, and Rolf Ingold. 2010. Description languages for
multimodal interaction: a set of guidelines and its illustration with SMUIML.
Journal on multimodal user interfaces 3 (2010), 237–247.

[13] Bruno Dumas, Denis Lalanne, and Sharon Oviatt. 2009. Multimodal Interfaces: A
Survey of Principles, Models and Frameworks. Springer Berlin Heidelberg, Berlin,
Heidelberg, 3–26. https://doi.org/10.1007/978-3-642-00437-7_1

[14] Bruno Dumas, Beat Signer, and Denis Lalanne. 2011. A graphical uidl editor for
multimodal interaction design based on smuiml. (2011).

[15] Jerome Fink, Pierre Poitier, Maxime André, Loup Meurice, Benoît Frénay, An-
thony Cleve, Bruno Dumas, and Laurence Meurant. 2023. Sign Language to Text
Dictionary with Lightweight Transformer Models. In Proceedings of the 32nd
International Joint Conference on Artificial Intelligence (IJCAI 2023): AI for Social
Good track.

[16] Charles L Forgy. 1989. Rete: A fast algorithm for the many pattern/many object
pattern match problem. In Readings in Artificial Intelligence and Databases.
Elsevier, 547–559.

[17] Lode Hoste, Bruno Dumas, and Beat Signer. 2011. Mudra: a unified multimodal
interaction framework. In Proceedings of the 13th international conference on
multimodal interfaces. 97–104.

[18] Karina Li, Daniel Wan Rosli, Shuning Zhang, Yuhan Zhang, Monica S Lam,
James A Landay, et al. 2023. ReactGenie: An Object-Oriented State Abstraction
for Complex Multimodal Interactions Using Large Language Models. arXiv
preprint arXiv:2306.09649 (2023).

[19] Vivian Genaro Motti. 2020. Wearable Interaction. Springer International Publish-
ing. https://doi.org/10.1007/978-3-030-27111-4

[20] Sharon Oviatt. 1999. Ten myths of multimodal interaction. Commun. ACM 42,
11 (1999), 74–81.

[21] Sharon Oviatt. 2022. Multimodal Interaction, Interfaces, and Analytics. Springer
International Publishing, Cham, 1–29. https://doi.org/10.1007/978-3-319-27648-
9_22-1

[22] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP). Association for Computational
Linguistics, Hong Kong, China, 3982–3992. https://doi.org/10.18653/v1/D19-1410

[23] Ritam Jyoti Sarmah, Yunpeng Ding, Di Wang, Cheuk Yin Phipson Lee, Toby Jia-
Jun Li, and Xiang’Anthony’ Chen. 2020. Geno: A Developer Tool for Authoring
Multimodal Interaction on Existing Web Applications. In Proceedings of the 33rd
Annual ACM Symposium on User Interface Software and Technology. 1169–1181.

[24] Jeff Sauro. 2011. A practical guide to the system usability scale: Background,
benchmarks & best practices. Measuring Usability LLC.

[25] Marcos Serrano, Laurence Nigay, Jean-Yves L Lawson, Andrew Ramsay, Roderick
Murray-Smith, and Sebastian Denef. 2008. The openinterface framework: A tool
for multimodal interaction. In CHI’08 Extended abstracts on human factors in
computing systems. 3501–3506.

[26] Jacqueline N Stetson and Thomas S Tullis. 2004. A comparison of questionnaires
for assessing website usability. UPA Presentation (2004).

[27] Matthew Turk. 2014. Multimodal interaction: A review. Pattern recognition letters
36 (2014), 189–195.

[28] Minh Tue Vo and Cindy Wood. 1996. Building an application framework for
speech and pen input integration in multimodal learning interfaces. In 1996 IEEE
International Conference on Acoustics, Speech, and Signal Processing Conference
Proceedings, Vol. 6. IEEE, 3545–3548.

Received February 16, 2024; accepted May 6, 2024

https://doi.org/10.1145/965105.807503
https://doi.org/10.1111/j.2044-8279.1992.tb01017.x
https://doi.org/10.1109/CMV.2003.1215003
https://doi.org/10.1007/978-3-642-00437-7_1
https://doi.org/10.1007/978-3-030-27111-4
https://doi.org/10.1007/978-3-319-27648-9_22-1
https://doi.org/10.1007/978-3-319-27648-9_22-1
https://doi.org/10.18653/v1/D19-1410

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Fusion Engine Tools

	3 Ummi Fusion Engine
	3.1 Prototyping with Ummi
	3.2 Modalities Representation
	3.3 Speech-Centric Fusion
	3.4 Desired Outcomes and Advantages

	4 Evaluation
	4.1 Participants
	4.2 Setup
	4.3 Results
	4.4 Threats to Validity

	5 Limitation and Future Work
	6 Conclusion
	Acknowledgments
	References

