
Towards Automated Test Case Generation Maturity
Urko Rueda

Research Center on Software Production Methods
Universitat Politècnica de València

Valencia, Spain
urueda@pros.upv.es

Fitsum Kifetew
Fondazione Bruno Kessler

Trento, Italy
kifetew@fbk.eu

Xavier Devroey
Delft University of Technology

Delft, The Netherlands
x.d.m.devroey@tudelft.nl

Abstract—This short paper reports our observations after six
editions of the JUnitContest that benchmarks automated unit test
generation tools for Java programs. We discuss our experience
and depict the current state-of-the-art and identify potential
future research directions. We advocate the use of benchmark as
a standard practice to enhance maturity and foster adoption by
the industry of automated test case generation tools.

Index Terms—Maturation, Automation, Quality, Benchmark-
ing, Challenges, Industry adoption

I. INTRODUCTION

Research in software testing has been going on for more
than 6 decades and has demonstrated several advances and
successes to enhance the software quality [1]. However, the
transfer from research to industry has not always been a
smooth process. In particular, despite some success stories [2],
the automation of test case design is still far from industry
expectations [3].

In other research fields, like hardware [4], information
retrieval [5] or reverse engineering [6], benchmarking has
demonstrated its utility to help standardization and maturation
[7]. Benchmarking tools built by the research community on
artifacts coming from industry (i) helps in promoting scientific
maturity of a research field; (ii) helps researchers to understand
problems encountered in the field, allowing them to improve
their tools and identify new research directions.

Efforts to adopt benchmarking have been made by the
software testing research community with works like De-
fects4J [8], the SF110 Corpus of Classes [9], JCrashPack,1

TestBench, 2 TESTBEDS, 3 and the JUnitContest. 4 However,
the absence of an established benchmark practice makes it
hard to compare approaches [10]. In particular, the existence of
benchmarks requires a community to support the maintenance
effort and avoid deprecation of the benchmarks and the re-
search they support. Also, the contributions must be evaluated
against clearly defined standards to promote research that is
collaborative, open and public.

1https://github.com/STAMP-project/JCrashPack
2https://personal.cis.strath.ac.uk/marc.roper/TestBench10/
3http://www.cs.umd.edu/~atif/testbeds/testbeds2011.htm
4https://github.com/PROSRESEARCHCENTER/junitcontest

II. OBSERVATIONS FROM SIX EDITIONS OF THE
JUNITCONTEST

Reflecting on six years of benchmarking automated tools
that generate JUnit tests for Java programs at the class level
[11], we report some observations.

First, the JUnitContest benchmarking infrastructure is only
suited for the Java programming language. The TIOBE 5 Pro-
gramming Community index is an indicator of the popularity
of programming languages. According to TIOBE Index for
February 2019, Java is the most popular language, but we are
only facing a small subset of code out in the market (Java
representing 15.87%). There are yet 84.13% other program-
ming languages for which benchmarking would be required
to enable maturation of research prototype and, eventually,
industry adoption.

Second, the JUnitContest has seen participation from a small
number of automated unit test generation tools. However,
results from the contest indicate that the combination (union)
of the tests from all participating tools can outperform human
developed tests. This suggests that existing tools tend to cover
different areas of the testing problem, hence indicating the
usefulness of considering a combined approach.

Third, open sourcing the JUnitContest infrastructure and
competition results ease replication studies and comparison of
other tools with state of the art. It allows comparison without
requiring rerunning all the tools on the benchmark since the
results are public as well. The statistics used to compare and
rank the different tools also offer a reference standard.

Finally, the target benchmarks used in the last compe-
titions have been built from open-source projects available
online, ranging from simple to more complex and difficult,
with respect to testing. Results of the contest also indicate
the weaknesses of the existing tools, which is an important
feedback for the research community. This feedback helps to
identify the future research directions to pursue to improve the
effectiveness of test generating tools.

III. CHALLENGES

Here are some challenges we identify from the previous
editions of the JUnitContest competition.

5https://www.tiobe.com/tiobe-index/

Xavier Devroey
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. 
https://doi.org/10.1109/SBST.2019.00011



A. Programming languages landscape

The JUnitContest competition focuses on unit test genera-
tion for Java programs. However, applications are written in
a large variety of languages and can even mix several ones.
Research and benchmarking for other programming languages
should take care of not reinventing the wheel. This calls
for identification of commonalities and variabilities across
programming languages and unit test generation tools to be
able to identify cases where to apply specific testing techniques
or solutions. And to dedicated unit test generation approaches
working across programming languages boundaries.

B. Collaborations for testing tools integration

As pointed out by previous results [11], integration of
multiple unit test generation tools, each one relying on a
specific approach, allows to achieve a higher effectiveness than
using tools in isolation. Special focus should be dedicated
to the integration of different approaches to achieve higher
effectiveness without decreasing efficiency.

C. High and low performing benchmarks

The benchmarks, coming from industrial open-source ap-
plications, and public results from the JUnitContest allow
identifying the classes for which unit test generation is dif-
ficult. It offers an excellent opportunity for researchers to
identify discrepancies between the current research state-of-
the-art and industry state-of-the-practice. For instance, what
characteristics hamper unit test generation via search-based
or concolic-based approaches? Which generation technique is
better, based on the characteristics of the class under test? etc.

IV. MAKING BENCHMARKING ALIVE

This year we are celebrating the seventh edition of the
JUnitContest, held at the SBST workshop co-located with
ICSE’19. The source code of the contest infrastructure, and
instructions on how to prepare a unit test generation tool to be
used with this infrastructure, are publicly available6. Using the
JUnitContest infrastructure offers several advantages, among
which: experiments replication, comparison to other tools,
standardization of the evaluation, etc. Furthermore, this year
the contest infrastructure has been also made available as a
Docker7 image to facilitate easy setup and use. But ultimately,
making benchmarking alive is in the hands of the community.

Since the first JUnitContest, crucial steps have been taken
to foster maturation of automated unit test generation in a long
journey for which, this position paper suggests some paths to
follow.

V. DISCUSSION

In reality, the Software Testing community is focused on
detecting/repairing faulty software developments. Should the
research directions focus on repairing, or on helping develop
better instead? Arguably, the load on the testing domain could
be greatly reduced by employing formal code compilation

6https://github.com/PROSRESEARCHCENTER/junitcontest
7https://www.docker.com

(from models to code). Approaches are open to mitigate [12]
by introducing formal methods for sound, correct and complete
Software Production Processes. In the meantime, the Software
Testing community is challenged to stay on the wave of
modern software production (with its benefits and drawbacks),
which - more than helping to guarantee the quality of software-
makes it more difficult and complex to accomplish than ever
(new devices, systems of systems, massive connectivity, Big
Data applications, etc.).

ACKNOWLEDGMENT

This work has been partially supported by the Spanish
State Research Agency and the Generalidad Valenciana under
the projects DataME (TIN2016-80811-P). GISPRO (PROME-
TEO/2018/176), co-financed with ERDF, the EU Horizon 2020
ICT-10-2016-RIA “STAMP” project (No.731529), and the
Dutch 4TU project “Big Software on the Run”, and by the Ital-
ian Ministry of Education, University, and Research (MIUR)
with the PRIN project GAUSS (grant n. 2015KWREMX).

REFERENCES

[1] D. Gelperin and B. Hetzel, “The growth of software testing,” Commun.
ACM, vol. 31, no. 6, pp. 687–695, Jun. 1988. [Online]. Available:
http://doi.acm.org/10.1145/62959.62965

[2] N. Alshahwan, X. Gao, M. Harman, Y. Jia, K. Mao, A. Mols, T. Tei, and
I. Zorin, “Deploying Search Based Software Engineering with Sapienz
at Facebook,” in Search-Based Software Engineering. SSBSE 2018., ser.
LNCS, vol. 11036. Springer, 2018.

[3] V. Garousi and M. V. Mäntylä, “When and what to automate in soft-
ware testing? a multi-vocal literature review,” Information & Software
Technology, vol. 76, pp. 92–117, 2016.

[4] J. L. Henning, “Spec cpu2000: measuring cpu performance in the new
millennium,” Computer, vol. 33, no. 7, pp. 28–35, July 2000.

[5] A. Rorissa, “Image retrieval: Benchmarking visual information
indexing and retrieval systems,” Bulletin of the American Society
for Information Science and Technology, vol. 33, no. 3, pp. 15–17,
2007. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.
1002/bult.2007.BULT1720330310

[6] S. E. Sim, R. C. Holt, and S. Easterbrook, “On using a benchmark to
evaluate c++ extractors,” in Proceedings 10th International Workshop
on Program Comprehension, June 2002, pp. 114–123.

[7] S. E. Sim, S. Easterbrook, and R. C. Holt, “Using benchmarking to
advance research: A challenge to software engineering,” in Proceedings
of the 25th International Conference on Software Engineering, ser. ICSE
’03. Washington, DC, USA: IEEE Computer Society, 2003, pp. 74–83.
[Online]. Available: http://dl.acm.org/citation.cfm?id=776816.776826

[8] R. Just, D. Jalali, and M. D. Ernst, “Defects4J: a database of existing
faults to enable controlled testing studies for Java programs,” in Pro-
ceedings of the 2014 International Symposium on Software Testing and
Analysis - ISSTA 2014. ACM Press, 2014, pp. 437–440.

[9] G. Fraser and A. Arcuri, “A Large-Scale Evaluation of Automated
Unit Test Generation Using EvoSuite,” ACM Transactions on Software
Engineering and Methodology, vol. 24, no. 2, pp. 1–42, dec 2014.

[10] M. D’Ambros, M. Lanza, and R. Robbes, “Evaluating defect prediction
approaches: a benchmark and an extensive comparison,” Empirical
Software Engineering, vol. 17, no. 4, pp. 531–577, Aug 2012. [Online].
Available: https://doi.org/10.1007/s10664-011-9173-9

[11] U. Rueda Molina, F. Kifetew, and A. Panichella, “Java unit testing tool
competition: Sixth round,” in Proceedings of the 11th International
Workshop on Search-Based Software Testing, ser. SBST ’18. New
York, NY, USA: ACM, 2018, pp. 22–29. [Online]. Available:
http://doi.acm.org/10.1145/3194718.3194728

[12] O. Pastor and V. Pelechano, The Conceptual Model Is The Code. Why
Not? Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 153–
159.


