
A3S3 - Automated Android Audit of Safety and
Security Signals⋆

Guillaume Nguyen1[0000−1111−2222−3333] and Xavier
Devroey1[0000−0002−0831−7606]

NADI - University of Namur, Namur, Belgium
{guillaume.nguyen,xavier.devroey}@unamur.be

Abstract. Android devices and related applications are increasingly
prevalent in our daily routines. Furthermore, these technologies are be-
ing used for more than just connecting people around the world. Indeed,
Android devices are more and more connected to external sensors or used
as sensors, directly gathering data from their environment, which brings
them closer to Cyber Physical Systems (CPS). When used for specific
purposes such as health, Android devices and related applications can
be life-critical (insulin pumps, heart monitoring, etc.), requiring guaran-
tees specific to the application domain. Interestingly, when considering
the technical security in domains related to operational technologies, we
can see that many standards are available while not directly intended
for Android applications. Other regulatory texts can also be valuable to
drive an audit process, although they need more effort to reach techni-
cally testable requirements from the legal requirements they define. In
particular, Android applications are developed using various device per-
missions (i.e., resource access), external libraries, etc. In this paper, we
present A3S3 a tool to link requirements from industry standards and
regulatory texts to Android features to drive a security audit. Follow-
ing research in the cyber-security community, we suggest an approach
based on static code analysis of Android applications to retrieve good
and bad signals, denoting potential violations, related to non-functional
requirements.

Keywords: android · compliance · static analysis · tool · safety · secu-
rity.

1 Introduction and Motivation

The Android Operating System (OS) makes up approximately 70% of the market
share in terms of mobile operating systems [23]. With its development, Android-
based devices are now commonly used for many different purposes than initially
⋆ This version of the contribution has been accepted for publication, after peer re-

view (when applicable) but is not the Version of Record and does not reflect post-
acceptance improvements, or any corrections. The Version of Record is available
online at: https://doi.org/10.1007/978-3-031-94590-8_25. Use of this Accepted
Version is subject to the publisher’s Accepted Manuscript terms of use https://www.
springernature.com/gp/open-research/policies/accepted-manuscript-terms

https://doi.org/10.1007/978-3-031-94590-8_25
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms


2 G. Nguyen et X. Devroey

intended. Indeed, it started as an OS for mobile devices such as phones and
tablets when Google released it in 2007, 2 years after their acquisition [7]. And
now Android is an open source, Linux-based software stack created for a wide
array of devices and form factors [11]. This new definition includes way more
device types than previously. Many of those devices are part of our daily routines
and are being used as means of data collection, among other things. This includes
serving as an intermediary with Internet of Things (IoT) devices such as smart
home devices, smartwatches, smart TVs, projectors, etc.

Highlighting the sensor capabilities of Android devices and their integration
with external sensors, we can see that their use is closer to Cyber Physical Sys-
tems (CPS), which relies on sensor data and real-time computing to have an
effect on the real world than regular Android applications. CPSs share similari-
ties with Embedded Systems, Internet of Things (IoT) or Operational Technology
(OT) in the industry. Gartner defines OT as hardware and software that detects
or causes a change through the direct monitoring and/or control of industrial
equipment, assets, processes, and events [10].

Fig. 1. Evolution of the number of papers based on search results for "Android device"
+ "health" on Google Scholar.

In particular, the number of Android devices used in the health sector for
medical purposes is rising. Indeed, as shown in Fig. 1, we can see that the number
of papers associated with Android device and Health has been growing quite
steadily since Google released Android. Of course, this is only a light indicator
of evolution. Yet, it remains interesting to focus our efforts on ensuring patients’
safety when such technologies are used for medical purposes. Furthermore, when
talking about Android Smartphones, we can see that they also have their utility
as sensors. Indeed, they could also be used as Fall Detection systems, a significant
issue for elderly people regarding life risks and hospital costs [3]. Other well-
known embedded sensors, such as the camera and the microphone, can also
serve various purposes in the health sector (e.g., respiratory monitoring) [18].
We can already see Android applications supporting the control of Unmanned
Aerial Vehicles (UAV).

Practically, A3S3 is developed as a platform to generate, using static code
analysis [17], a report enabling an auditor to decide whether an Android applica-
tion passes specific audit controls based on the collected signals (i.e., indications



A3S3 - Automated Android Audit of Safety and Security Signals 3

of a potential violation, extracted using static analysis). Concretely, we want to
help developers (or quality assurance) tick audit boxes (called audit controls)
based on automatically retrieved Android features in specific applications. Once
checked, the report produced by A3S3 can be used as an additional input for an
audit process supporting the production of a proof of (non-)conformity. In short,
we aim at detecting non-conformity risks similar to the efforts of the Software
Engineering community in detecting security risks through audits [22]. A non-
referenced demonstration video of the tool is available 1, and the source code
is openly available 2. A3S3 is a static code analyser for non-conformity risks on
Android application with respect to a specific framework (regulation or stan-
dard) based on URL’s, Imports and Permissions found in the decompiled code
of an application.

2 Related Work

In this section we discuss the various work related to assessing an android ap-
plication such as previous work in malware detection, static security analysis,
non-functional properties and medical applications.

Malware detection - Most Android application assessment focuses on malware
detection [6]. For example, if a video game is requesting access to text messages,
to the storage of the device, the camera, the Bluetooth devices connected to the
phone, etc., it might be a signal that this video game is trying to collect data
unlawfully [25]. Exploiting this relationship between permissions and malware,
Aswini et al. [2] created Droid Miner to extract relevant permissions as features
and determine whether those features are signals of a malicious or a benign
application using machine learning classification techniques.

Static security analysis - Going deeper into Android application code analysis,
we can see that there is an extensive collection of tools. Indeed, when trying
to determine if an application is benign or malicious, popular tools like Flow-
Droid perform a taint analysis using sources (data, user input, etc.) and sinks
(where it goes) [1]. There is also the FEST tool that acts as an extractor of API
calls and URLs within the code [26]. As a helping tool within the Intellij IDE,
SWANassist takes known Common Weakness Enumeration (CWE) from the
MITTRE corporation [4] and identifies Security Relevant Method from a Java
source code [20]. Finally, SootFX, a tool developed as a Java API, extracts a
tremendous amount of features, manifest, packages, and methods from Android
.apk files[15].

Non-functional properties - When speaking about non-functional requirements,
work is emerging from the well-known (European) General Data Protection Reg-
ulation (GDPR) [8] and its privacy concerns. Indeed, Tan et al. [24] use Flow-
droid to find discrepancies between the declared privacy policies of some applica-
tions and the actual collection and processing of personal data within the .apk
1 https://youtu.be/8GB6Fcq9rII
2 https://github.com/sabredefable/A3S3_python

https://youtu.be/8GB6Fcq9rII
https://github.com/sabredefable/A3S3_python


4 G. Nguyen et X. Devroey

file. They actually found that application providers sometimes did not declare
everything or even did not classify personal data as such. On a more precise mat-
ter, Khedar et al. [16] propose the use of static analysis on .apk files to identify
where data anonymization was necessary and not performed or not sufficiently
performed. At a higher abstraction level, Sacre et al. use metamodels to assess
the conformity of a system by comparing a theoretical and compliant model to
the model of the system under conformity assessment [21].

Medical applications - Looking more specifically at the security of medical appli-
cations, Hussain et al. [12] proposed a framework accompanied by a set of tools
to help developers enhance the security maturity of their applications.

As we can see, the main concern is identifying malware or data leakage within
the applications. All the existing tools either provide ways of retrieving fea-
tures, classifying malicious and benign applications, or finding more general
bugs. Encouraging work is being done concerning privacy matters on Android
applications. However, we look for conformity signals and propose a way to audit
non-functional requirements.

3 Approach

Our solution aims to retrieve signals for audit controls, presented in a struc-
tured data format, and produce an audit report. In a nutshell, the assessment of
conformity to a regulation or industrial standard (i.e., the audit) is usually car-
ried out by non-technical auditors who require: (1) inputs from technical experts
and (2) thorough documentation from the audited party or both. For example,
conformity audits in the European Union are based on technical reports, which
must include "proof of conformity" based on a specific legal framework [5]. Our
approach allows technology-agnostic audit controls of the legal requirements by
external non-technical auditors to be interpreted in technology-specific signals
(here, Android).

Assessment of medical application. As mentioned earlier, life-critical data
analysis safety concerns based on sensor collection share CPS-related concerns.
So, for example, in terms of technical security, we can look at manufacturing in-
dustry standards such as IEC 62443-4-2 [13], which has been declined into mul-
tiple industry-specific variations and lays out seven technology-agnostic Foun-
dational Requirements (FR’s): Identification and Authentication Control, Use
Control, System Integrity, Data Confidentiality, Restrict Data Flow, Timely Re-
sponse to Events and Resource Availability. Those FR’s have multiple controls
that must be performed for a FR’s to be validated. For each control, the auditor
has to decide on a Security Level for each of the following categories (as defined
in IEC 62443-4-2): the target level, the achieved level, and the capability level of
a specific component. The levels range from 0 to 4, the latter being the highest
level of security, indicating resilience to cyber attacks using sophisticated means,
great resources, and motivation.



A3S3 - Automated Android Audit of Safety and Security Signals 5

For this first application of A3S3, we focus on Android applications working
with medical data gathered from a device connected to the Android phone using
Bluetooth, any other Android Application Programming Interface (API) used
to retrieve data from existing services, or the device itself. Fortunately, the IEC
62443 standard has been adapted into different versions to suit better the needs
of specific manufacturing industries (here, the production of medical devices).
Specifically, we use the IEC 60601-4-5 [14] that specifies the technical security
requirements for Medical Devices (MD). While costs to access such documents
quickly add up in the balance, we can assume that it includes the relevant secu-
rity levels for each MD use case. Thus, we can use the foundational requirements
as an audit base. Despite industry standards being easier than regulatory texts
to use when assessing the conformity of a product, they do not constitute a basis
for (technical) audit documents. While they give valuable information to en-
gineers or any interested party on what to aim for when building, developing,
producing, testing, etc. products, standards must be interpreted for each specific
use case to link FR’s to implementation. In our example, this means linking FR’s
related to Data Confidentiality and Restrict Data Flow to specific Android API
calls gathering data from connected devices.

Application.apk
Decompiler Static analysis Extracted

features

Report

Standards and
regulations

Foundational
Requirements +

Rules

A3S3

1

2

3

Fig. 2. A3S3 analysis pipeline overview.

Assessment process using A3S3. Fig. 2 presents an overview of the A3S3
approach. First, we must identify the various FRs and their link to the different
features that can be extracted based on defined rules (1 in Fig. 2). For instance,
Android permissions can be easily collected and linked to the various FR’s related
to data management, like Data Confidentiality and Restrict Data Flow. Second,
we need to apply static analysis to the Android application to collect various
features (2 Fig. 2) that can be used to identify signals based on the rules defined
in (1). We consider Android executables stored as .apk and .xapk files. Those
files must be decompiled (from executable in binary to human-readable files)
before being analyzed. For instance, for our evaluation, we consider Android
applications from the Google Play store and search for applications with medical
purposes to download a set of .apk and .xapk files. Finally, A3S3 assesses each



6 G. Nguyen et X. Devroey

FR individually based on its rules (3 Fig. 2) and produces a report with the
various signals (i.e., combinations of extracted features) for each FR. In this
paper, we reach level 3 on the Technology Readiness Level (TRL) scale [19].

4 Preliminary Evaluation

For our preliminary evaluation, we performed a reduced audit of an applica-
tion with medical purposes to test our tool. Specific applications might have
to comply with MD requirements [9]. Indeed, when looking at smartphones, we
can quickly see that multiple applications offer "medical" follow-up in one form
or another. While many applications include a disclaimer saying users should
not be considered a replacement for a health professional, they still gather and
correlate health data to provide recommendations.

Using requirements extracted from the MDR for devices with a medical pur-
pose (monitoring, prevention or monitoring of disease) and requirements laid
out in points 17 and 18 of Annex I we decided to focus on 17.2 stating “For
devices that incorporate software or for software that are devices in themselves,
the software shall be developed and manufactured in accordance with the state of
the art taking into account the principles of development life cycle, risk manage-
ment, including information security, verification and validation” [9, p. 100]. As
previously introduced, we decided to use IEC 60601 as state of the art which has
a specific application for medical devices. We focused on the fifth one: Restrict
Data Flow (RDF), stating that a limited number of data sources is desirable.
While not an exhaustive list, we identified 8 possible data sources. By auditing
12 randomly selected health-related applications available on Google Play, we
found that the average number of data sources per application is 3.75 and that
the most common sources are Internet (12/12), Bluetooth (11/12) and Firebase
(10/12). Google supports all APIs identified in the source code.

The auditor can decide whether the FR is met for each application based
on the data collected. For instance, when considering FibriCheck, we identify
the three data sources using the following features collected by the static ana-
lyzer: (i) Internet, identified from the manifest that has the ‘android.permi-
ssion.INTERNET’ permission;3 (ii) Bluetooth, identified from the import of the
‘android.bluetooth’ library somewhere in the code;4 (iii) Firebase API, identi-
fied from the presence of the ‘https://firebase.google.com’ URL in the code
and the import of the ‘com.google.firebase’ library.5 Based on those signals,
an auditor can assess if the RDF requirement is satisfied.

5 Conclusion and Future Work

We presented A3S3, a tool that performs static code analysis on Android appli-
cations following specific controls from various sources to look for signals that
3 https://developer.android.com/develop/connectivity/network-ops/connecting
4 https://developer.android.com/reference/android/bluetooth/package-summary
5 https://firebase.google.com/docs/build?hl=fr

https://firebase.google.com


A3S3 - Automated Android Audit of Safety and Security Signals 7

an auditor or any interested party might interpret. We showed that linking non-
functional controls (i.e., FRs) to specific Android features was possible. Indeed,
by auditing 12 Android applications, we looked into various data sources by
performing a static code analysis and helping an auditor decide if the control
was satisfied. The compliance or non-compliance with a specific control remains
within the auditor’s power.

While we believe this tool has great potential in assessing Android applica-
tions, it will be upgraded to extract even more features. For static code analysis,
we will use SootFX, which allows a broader range of static analyses, like the
extraction of methods called within the application. For signal generation, we
will look for additional technical regulations. For instance, we believe that the
controls from IEC 62443 might act as a good cornerstone between high-level and
technical requirements for CPS-related safety and security concerns.

We will also work with users to develop coherent dashboards to display the
audit results in a user-friendly and adapted way (e.g., for auditors, developers,
managers, etc.). We will add information on the various signals found in the
assessed application to limit as much as possible the technical knowledge required
to understand what the signals mean in the context of a specific regulation.

Acknowledgments. This research was funded by the CyberExcellence by Digital-
Wallonia project (No. 2110186), funded by the Public Service of Wallonia (SPW
Recherche).

References

1. Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Le Traon, Y.,
Octeau, D., McDaniel, P.: Flowdroid: precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for android apps. ACM SIGPLAN Notices 49(6),
259–269 (Jun 2014). https://doi.org/10.1145/2666356.2594299

2. Aswini, A.M., Vinod, P.: Droid permission miner: Mining prominent permissions
for android malware analysis. In: The Fifth International Conference on the Ap-
plications of Digital Information and Web Technologies (ICADIWT 2014). IEEE
(Feb 2014). https://doi.org/10.1109/icadiwt.2014.6814679

3. Casilari, E., Luque, R., Morón, M.J.: Analysis of android device-based solutions
for fall detection. Sensors 15(8), 17827–17894 (Jul 2015). https://doi.org/10.
3390/s150817827

4. Corporation, M.: CWE - Common Weakness Enumeration - cwe.mitre.org. https:
//cwe.mitre.org/, accessed 10-09-2024

5. EC: EUR-Lex - commission notice the ‘blue guide’ on the implementation of eu
product rules 2022 (2022), https://eur-lex.europa.eu/, accessed 19-11-2024

6. Ehsan, A., Catal, C., Mishra, A.: Detecting malware by analyzing app permissions
on android platform: A systematic literature review. Sensors 22(20), 7928 (Oct
2022). https://doi.org/10.3390/s22207928

7. Elgin, B.: Google Buys Android for Its Mobile Arsenal - web.archive.org (2005),
https://shorturl.at/Qoh2p, accessed 06-09-2024

8. EU: Regulation - 2016/679 - EN - gdpr - EUR-Lex - eur-lex.europa.eu. https:
//eur-lex.europa.eu/eli/reg/2016/679/oj (2016), accessed 20-09-2024

https://doi.org/10.1145/2666356.2594299
https://doi.org/10.1145/2666356.2594299
https://doi.org/10.1109/icadiwt.2014.6814679
https://doi.org/10.1109/icadiwt.2014.6814679
https://doi.org/10.3390/s150817827
https://doi.org/10.3390/s150817827
https://doi.org/10.3390/s150817827
https://doi.org/10.3390/s150817827
https://cwe.mitre.org/
https://cwe.mitre.org/
https://eur-lex.europa.eu/
https://doi.org/10.3390/s22207928
https://doi.org/10.3390/s22207928
https://shorturl.at/Qoh2p
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj


8 G. Nguyen et X. Devroey

9. EU: Regulation - 2017/745 - EN - Medical Device Regulation - EUR-Lex
- eur-lex.europa.eu. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=
CELEX%3A32017R0745 (2017), accessed 18-09-2024

10. Gartner: Definition of Operational Technology (OT) - Gartner Infor-
mation Technology Glossary - gartner.com, https://www.gartner.com/en/
information-technology/glossary/operational-technology-ot, accessed 04-
Jul-2023

11. Google: Platform architecture | Android Developers - developer.android.com.
https://developer.android.com/guide/platform?hl=en, accessed 05-09-2024

12. Hussain, M., Zaidan, A., Zidan, B., Iqbal, S., Ahmed, M., Albahri, O., Albahri, A.:
Conceptual framework for the security of mobile health applications on android
platform. Telematics and Informatics 35(5), 1335–1354 (Aug 2018). https://doi.
org/10.1016/j.tele.2018.03.005

13. IEC: IEC 62443-4-2:2019 (2019), https://webstore.iec.ch/en/publication/
34421, accessed 30-08-2024

14. IEC: IEC TR 60601-4-5:2021 (2021), https://webstore.iec.ch/en/
publication/64703, accessed 30-08-2024

15. Karakaya, K., Bodden, E.: Sootfx: A static code feature extraction tool for java
and android. In: 2021 IEEE 21st International Working Conference on Source
Code Analysis and Manipulation (SCAM). vol. 14, pp. 181–186. IEEE (Sep 2021).
https://doi.org/10.1109/scam52516.2021.00030

16. Khedkar, M., Bodden, E.: Toward an android static analysis approach for data
protection (2024). https://doi.org/10.48550/ARXIV.2402.07889

17. Louridas, P.: Static code analysis. IEEE Software 23(4), 58–61 (Jul 2006). https:
//doi.org/10.1109/ms.2006.114

18. Majumder, S., Deen, M.J.: Smartphone sensors for health monitoring and diagno-
sis. Sensors 19(9), 2164 (May 2019). https://doi.org/10.3390/s19092164

19. Mankins, J.C., et al.: Technology readiness levels. White Paper, April 6(1995),
1995 (1995)

20. Piskachev, G., Nguyen Quang Do, L., Johnson, O., Bodden, E.: Swanassist: Semi-
automated detection of code-specific, security-relevant methods. In: 2019 34th
IEEE-ACM International Conference on Automated Software Engineering (ASE).
IEEE (Nov 2019). https://doi.org/10.1109/ase.2019.00110

21. Sacre, A., COLIN, J.N., Hosselet, B.: ARRCIS: évaluation et renforcement de
la conformité réglementaire d’un système d’information, pp. 159–176. No. 52 in
Collection du CRIDS, Larcier (2021)

22. Sanchez-Garcia, I.D., Rea-Guaman, A.M., Gilabert, T.S.F., Calvo-Manzano, J.A.:
Cybersecurity Risk Audit: A Systematic Literature Review, p. 275–301. Springer
Nature Switzerland (2024). https://doi.org/10.1007/978-3-031-50590-4_18,
http://dx.doi.org/10.1007/978-3-031-50590-4_18

23. Statista: Mobile OS market share worldwide 2009-2024 | Statista -
statista.com (2024), https://www.statista.com/statistics/272698/
global-market-share-held-by-mobile-operating-systems-since-2009/,
accessed 09-09-2024

24. Tan, Z., Song, W.: Ptpdroid: Detecting violated user privacy disclosures to third-
parties of android apps. In: 2023 IEEE/ACM 45th International Conference on
Software Engineering (ICSE). pp. 473–485. IEEE (May 2023). https://doi.org/
10.1109/icse48619.2023.00050

25. Zhang, Y., Yang, M., Xu, B., Yang, Z., Gu, G., Ning, P., Wang, X.S., Zang, B.:
Vetting undesirable behaviors in android apps with permission use analysis. In:

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32017R0745
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32017R0745
https://www.gartner.com/en/information-technology/glossary/operational-technology-ot
https://www.gartner.com/en/information-technology/glossary/operational-technology-ot
https://developer.android.com/guide/platform?hl=en
https://doi.org/10.1016/j.tele.2018.03.005
https://doi.org/10.1016/j.tele.2018.03.005
https://doi.org/10.1016/j.tele.2018.03.005
https://doi.org/10.1016/j.tele.2018.03.005
https://webstore.iec.ch/en/publication/34421
https://webstore.iec.ch/en/publication/34421
https://webstore.iec.ch/en/publication/64703
https://webstore.iec.ch/en/publication/64703
https://doi.org/10.1109/scam52516.2021.00030
https://doi.org/10.1109/scam52516.2021.00030
https://doi.org/10.48550/ARXIV.2402.07889
https://doi.org/10.48550/ARXIV.2402.07889
https://doi.org/10.1109/ms.2006.114
https://doi.org/10.1109/ms.2006.114
https://doi.org/10.1109/ms.2006.114
https://doi.org/10.1109/ms.2006.114
https://doi.org/10.3390/s19092164
https://doi.org/10.3390/s19092164
https://doi.org/10.1109/ase.2019.00110
https://doi.org/10.1109/ase.2019.00110
https://doi.org/10.1007/978-3-031-50590-4_18
https://doi.org/10.1007/978-3-031-50590-4_18
http://dx.doi.org/10.1007/978-3-031-50590-4_18
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://doi.org/10.1109/icse48619.2023.00050
https://doi.org/10.1109/icse48619.2023.00050
https://doi.org/10.1109/icse48619.2023.00050
https://doi.org/10.1109/icse48619.2023.00050


A3S3 - Automated Android Audit of Safety and Security Signals 9

Proceedings of the 2013 ACM SIGSAC conference on Computer & communications
security - CCS ’13. pp. 611–622. CCS ’13, ACM Press (2013)

26. Zhao, K., Zhang, D., Su, X., Li, W.: Fest: A feature extraction and selection
tool for android malware detection. In: 2015 IEEE Symposium on Computers and
Communication (ISCC). IEEE (Jul 2015). https://doi.org/10.1109/iscc.2015.
7405598

https://doi.org/10.1109/iscc.2015.7405598
https://doi.org/10.1109/iscc.2015.7405598
https://doi.org/10.1109/iscc.2015.7405598
https://doi.org/10.1109/iscc.2015.7405598

	A3S3 - Automated Android Audit of Safety and Security Signals

