
Towards debiasing code review support
Tobias Jetzen

NADI, University of Namur
Namur, Belgium

Xavier Devroey
NADI, University of Namur

Namur, Belgium
xavier.devroey@unamur.be

Nicolas Matton
NADI, University of Namur

Namur, Belgium
nicolas.matton@unamur.be

Benoı̂t Vanderose
NADI, University of Namur

Namur, Belgium
benoit.vanderose@unamur.be

Abstract—Background: Current state-of-the-art established
that cognitive biases appear during code review. They signif-
icantly impact the creation of feedback and how developers
interpret it. These biases can lead to illogical reasoning and
decision-making, violating one of the main hypotheses supporting
code review: developers’ accurate and objective code evaluation.
Objective: This paper explores harmful cases caused by cognitive
biases during code review and potential solutions to avoid
such cases or mitigate their effects. Method: We design several
prototypes covering confirmation bias and decision fatigue. We
rely on a developer-centered design approach by conducting
usability tests and validating the prototype with a user experience
questionnaire (UEQ) and participants’ feedback. Results: Our
interim findings show that some techniques could be implemented
in existing code review tools as reviewers will accept them and
help prevent behavior detrimental to code review. Conclusion:
This work provides a first approach to treating cognitive bias
in code review. The developed prototypes will evolve into fully
functional tools, with an extensive evaluation with developers.

Index Terms—cognitive bias, code review, user-centered design

I. INTRODUCTION

One of the many software development activities taken to
ensure code quality is code review. Code review consists of
methodical code assessments that follow pre-defined guide-
lines and are supported by various tools to identify potential
bugs, increase code readability, help developers learn the
source code (i.e., code knowledge transfer), etc. Practically,
code review is performed by a developer (i.e., a reviewer),
usually other than the author of the code being reviewed. This
reviewer relies on tools to read the code and make comments,
ask questions, and request changes that the author will take
care of. Once the author and the reviewer are satisfied, the
code is included (i.e., merged) into the code base. The main
goals of code review are to prevent defects, enable knowledge
transfer, check the code readability, enforce maintainability
standards, etc., on recently modified source code [2], [33].

Like many software engineering activities, code review not
only involves applying technical knowledge but heavily relies
on social interactions between the reviewer and the author
of the code [7], [11], [28], [34]. Such social-based activities

This research was funded by the CyberExcellence by DigitalWallonia
project (No. 2110186), funded by the Public Service of Wallonia (SPW
Recherche).

978-1-5386-5541-2/18/$31.00 ©2025 IEEE. This is the authors’ version. The
final version us published in 2025 IEEE/ACM 18th International Conference
on Cooperative and Human Aspects of Software Engineering (CHASE).

are heavily influenced by cognitive and social aspects that are
often neglected. This research focuses on cognitive biases [1],
specifically their triggers and potential effects on code review
quality already identified by the current state-of-the-art [3],
[28]. First, we list factors triggering cognitive biases for the
reviewer or the author. Second, we design solutions to avoid
such biases or mitigate their effects.

In this short paper, we report on our emerging and interim
findings from the design of the solutions addressing the trig-
gers of confirmation bias and the effects of decision fatigue.
For that, we follow a user-centered (here, developer-centered)
design approach [27], [29], [30]. In the first phase, we explore
potentially harmful situations and design theoretical solutions
to prevent or mitigate biases. In the second phase, we aim
to improve the designed solutions by conducting usability
tests with beginners using a prototype based on an existing
code review tool. These tests serve as feedback to gather the
users’ requirements for an acceptable solution. To achieve
this, we iterate multiple times over the prototype. Finally,
we conduct an evaluation of the prototype’s final result by
testing the user experience with the standard User Experience
Questionnaire (UEQ) [36], [37] to test whether developers
accept our solution. With the prototype as a final result and
an evaluation of its usability (see our replication package [18],
[19]), we propose a first work on solving relationships between
cognitive bias and code review. The prototype will serve as the
basis for developing a functional tool to evaluate the impact
of our solutions on confirmation bias and decision fatigue.

II. BACKGROUND

In psychology, cognitive biases (denoted biases hereafter)
refer to instances where human cognition consistently gen-
erates representations that are systematically distorted when
compared to objective reality [17]. Unlike logical fallacies,
which are arguments based on invalid reasoning, biases are
patterns of thinking that affect how we interpret new infor-
mation and processes. They are applied systematically and
influence our behavior, opinions, and decisions. Causes of
biases are rooted in heuristics [1], [17], [21], [22], [42]:
shortcuts or rules of thumb used by our brain to solve a
problem or judge a situation quickly. For instance, people with
a higher social position tend to apply stereotypical views on
others more often than those with a more precarious position,
who invest more time and energy in social judgment [17].
However, precisely identifying the exact causes of a specific

bias is challenging [28] as the generative mechanism for many
cognitive biases is still an open question [28].

To eliminate biases (i.e., debiasing), previous research has
shown that neither applying more effort nor being more
experienced in a field helps mitigate cognitive biases [13].
However, training on cognitive biases and applying specific
techniques can make a substantial difference. This has been
demonstrated not only for experts in a field but also to affect
the judgment of non-experts [8].

a) Cognitive biases in software engineering: Given their
intensive human effort and involvement, cognitive biases have
also been explored for various software engineering activities
[7], [11], [14], [28], [34]. For instance, Barroso et al. [3]
investigated developers’ personalities’ influence on their tasks.
They have shown that the quality of the product depends on the
interaction between members of the team combined with their
professional capabilities and, therefore, on the interpretation
and reactions to feedback. Going further, Spadini et al. [40]
investigated the effect of existing review comments on code re-
view and showed that reviewers are subject to availability bias
when performing reviews. More recent research has evidenced
the importance of appropriate techniques to deal with cognitive
biases during code review, such as checklists to potentially
lower developers’ cognitive load [15]; avoiding destructive
criticisms not to decrease motivation [16]; or guideline to deal
with confusion during code reviews [10]. In a recent study,
Fagerholm et al. [11] have identified future research directions
for cognition in software engineering, including perception and
software quality, which have received very little attention.

b) Confirmation bias: One of the most researched cog-
nitive biases in psychology is the confirmation bias. It refers
to the collection, interpretation, analysis, and research for
information in a way that confirms one’s prior beliefs instead
of searching for information disproving them [20], [32]. In
practice, once the mind adopts an opinion, it does everything
to support it, leading to wrong decisions defying the sense of
logical reasoning. For instance, the positive test bias leads de-
velopers to test only to confirm the code instead of disproving
it [26], [34], [41]. In general, and not only during tests, one’s
goal should be to fail the code to reduce defect density [6].

c) Decision fatigue: A high number of decisions to
make, each requiring the processing of information over a
short period of time, leads to the depletion of internal resources
(ego depletion [4]). When ego depletion manifests as decision
fatigue, it causes attention deficit and impulsive decisions and
leads to postponing decisions to look at them later [9]. Finally,
people subjected to decision fatigue tend to have an impaired
ability to make trade-offs; they prefer acting in a passive role
and making irrational judgments. Unfortunately, such changes
in behavior are hard to recognize [31].

III. DEBIASING CODE REVIEW

From the literature, we notice that cognitive biases and their
effects can be explained as illustrated in Figure 1: we consider
that triggers can initiate a cognitive bias which impacts the
investigated activity. A trigger is a specific environmental

Trigger

(psychological, financial,
educational, social, ...)

< / >

Cognitive
bias

Effects on
code review

initiates produces

(overconfidence, confirmation,
decision fatigue, ...)

(overconfidence, confirmation,
decision fatigue,

impulsive decisions, ...)

Fig. 1. Relationship between triggers, cognitive biases, and their effects.

TABLE I
SCENARIOS FOR CONFIRMATION BIAS

Trigger: The developer gets low-quality feedback, hurting their self-esteem.
Effect: The developer refuses recommendations from the feedback to protect

their self-esteem.
Remedies: (a) Constructive feedback. Prevent the bias by advising the reviewer

on how to give constructive feedback.
(b) Review feedback. Prevent the bias by suggesting that the reviewer
ask another developer for feedback about their review.

Trigger: The reviewer is under time pressure due to circumstances.
Effect: The reviewer tries to validate the existing code instead of analyzing

it objectively.
Remedy: (c) Encourage brainstorming. Mitigate the impact by providing a

form with empty solution fields to encourage the reviewer to think
about multiple solutions.

condition that enables a cognitive bias. Multiple elements can
potentially trigger one cognitive bias, and one cognitive bias,
in turn, can produce multiple effects. This initial work focuses
on debiasing code review, which is essential in software
quality assurance, to avoid confirmation bias (i.e., triggers)
and mitigating potential effects of decision fatigue, which are
well documented in the literature. As mentioned in Section
II, precisely identifying the causes and effects of a specific
bias is challenging as the underlying mechanisms are poorly
understood. In our first step, we are interested in finding
practical solutions to debiase code review support. Based on
our review of the literature, we define a first set of scenarios
in which triggers and effects can be identified and reproduced.

a) Confirmation bias: Research in psychology investi-
gated confirmation bias a lot [6], [23], [34], providing a
solid basis to research its relations to software engineering,
especially to modern code review. We focus on two scenarios
described in Table I, with potential solutions. We assume that
how a reviewer builds the feedback influences the developer’s
perception and, therefore, their acceptance of the feedback
(first line in Table I). Also, when reviewers see code changes,
they are exposed to code that influences their perception
during review [40]. We assume that under time pressure, this
phenomenon becomes more pronounced: a reviewer tends to
search for fast review approval instead of correct implemen-
tation (second line in Table I).

b) Decision fatigue: Many triggers can initiate decision
fatigue [4], [39]. We focus on the scenarios described in Table
II. The first and second scenarios consider that a reviewer
needs motivation to tackle new code or potentially new topics.
Humans tend to perform small tasks where they are rewarded
early: this behavior is called hyperbolic discounting [24].
However, during code review, a reviewer may get assigned a
significant number of reviews to do or review code requiring
specific knowledge. Our assumption is that when decision fa-
tigue is triggered due to unfavorable circumstances for starting

TABLE II
SCENARIOS FOR DECISION FATIGUE

Trigger: The reviewer is over-solicited.
Effect: The reviewer misses motivation to do reviews and postpones them

for later (i.e., procrastination).
Remedies: (d) Scheduled reviews. Prevent the bias by limiting the number of

reviews to a maximum number and a calendar to schedule.
(e) Observe needed time. Prevent the bias by reminding the reviewer
to halt when too much time is needed for review.

Trigger: The reviewer misses knowledge about a specific topic in the code.
Effect: The reviewer misses motivation to do reviews and postpones them

for later (i.e., procrastination).
Remedy: (f) Find an expert. Prevent bias by assigning the best fitting reviewer

according to their experience in the topic.

Trigger: The reviewer works at times of day known for decreased internal
resources (e.g., the end of the working day or after lunch).

Effect: The reviewer makes impulsive comments instead of constructive
suggestions for the author.

Remedy: (g) Guide with comments. Mitigate the impact by guiding the
reviewer through the files with comments made by the author.

Trigger: The reviewer lacks experience in doing code reviews.
Effect: The reviewer skips code changes or parts of the code, leading to a

lower understanding of the code.
Remedy: (h) Help commenting. Mitigate the impact by providing a form with

keywords to help the reviewer include all essential elements.

tasks intensive in cognitive resources, the reviewer tends to
procrastinate. In the third scenario, decision fatigue leads the
reviewer to make impulsive comments. Our assumption is that
the comments will be expressed in a familiar way, leading to
destructive feedback instead of constructive feedback. In the
last scenario, our assumption is that understanding the code
is vital to making constructive comments for the author. A
review that is influenced by decision fatigue (i.e., not taking all
the elements into account) might provoke misleading feedback
for the author. Mitigating the impact of biases on code review
requires dealing with either the trigger initiating the bias or
its effects. The former or the latter might be better suited,
depending on the scenario.

IV. DESIGN OF THE CODE REVIEW SUPPORT

We design and test potential solutions to address the reme-
dies described in Tables I and II following a user-centered
(here, reviewer/developer-centered) design process [27], [29],
[30] to iteratively guide the building of our support. Figure 2
provides an overview of the process: due to time constraints,
we limited the development to two iterations (i.e., usability
tests), concluded by a user experience test, performed with a
different group of users than the one involved in the first and
second usability tests. The tested solutions are developed as
HTML prototypes. We relied on two groups of users (selected
using convenience sampling): three for the first and second
usability tests (all students in the final year of the MSc
program in computer science at the University of Namur) and
five for the final user experience test (one junior developer
and four senior developers with experience in code review).
We employ eight participants in total, which, according to
Faulkner [12], helps identify, on average, more than 80% of
the problems. More details about the participants are available
in our replication package [19].

User experience testSecond usability testFirst usability test

Develop base
prototype

Test usability

User
behavior

and
feedback

Apply user
feedback

Test usability

User
behavior

and
feedback

Apply user
feedback

Test with
questionnaire

User
feedback

and quest.
data

Fig. 2. Design, prototyping, and evaluation

A. First usability test

First, we create an initial prototype based on the web tool
Gerrit (https://www.gerritcodereview.com), similar to what can
be found on GitHub. Then, we implement the remedies listed
in Tables I and II, identified by the current state-of-the-art,
using the following techniques. Our user-centered design ap-
proach allows us to test and refine those techniques iteratively.
All the prototypes and results can be found in our replication
package [19]. The usability tests analyzed the usages of
the instrumented prototype, followed by a debrief session.
For each technique, we defined one or more scenarii where
the student acted as a developer or a reviewer, depending
on the technique, and was given a task to perform. After
each scenario, the first author debriefed with the student.
Due to space constraints, we only report a summary of our
observations in Table III.

a) Technique 1.1 – Advice: The goal is to help the
reviewer create constructive feedback [16]. The first technique
is based on advice displayed as a list. This list can be opened
by clicking the button I need advice. A popup shows a list
containing the advice. The advice originates from literature
investigating how to achieve constructive feedback [5], [43].

b) Technique 1.2 - Form: Because under decision fatigue,
reviewers tend to make incomplete comments [15], the idea
of a pre-structured form seems an appropriate choice. This
way, the reviewer does not have to think about structuring the
comment. It should include the identification of a problem, a
justification of why the discovery is considered a problem, and
a suggestion to solve it. Here, three empty fields are available
to encourage the reviewer to brainstorm multiple suggestions,
promoting more thorough and considered feedback.

c) Technique 1.3 -– Guide: To avoid the user skipping
changes or even entire files from being reviewed, a guide
is offered just before starting the review [10]. This guide
consists of a certain amount of comments written by the
author. They contain an explanation of why a certain change
was made. When launching the guide, the reviewer’s attention
is immediately drawn to the first comment, surrounded by a red
border, as decided by the author. When the reviewer decides
they understand the change, they click the button Next to go
to the next comment. Once having been through every step,
the reviewer starts the actual review.

B. Second usability test

We improved the prototype based on the observed behav-
ior and the participants’ suggestions. Some techniques were

TABLE III
SUMMARY OF THE USABILITY TESTS OBSERVATIONS

Usability test 1

Technique 1.1 ⊕ Most users apply the advice after reading it.
Advice ⊕ The short formulated advice is appreciated.
Remedies (a), (b), (f) ⊖ The popup button is not always noticed.

⊖ Not everybody wants to be advised.
⊖ Background color confuses participants.

Technique 1.2 ⊕ All fields get filled out.
Form ⊕ The form provides a coherent structure.
Remedies (c), (d), (e) ⊖ Only one solution is given.
(h) ⊖ Some feel overwhelmed.

Technique 1.3 ⊕ Everyone uses the guide.
Guide ⊕ No code change is skipped.
Remedies (d), (e), (g) ⊖ The guide could bias the reviewer’s comment.

⊖ The Next button is not intuitive.

Usability test 2

Technique 2.1 ⊕ The advice is noticed and read immediately.
Advice ⊕ The advice impacts the overall comment.
Remedies (a), (b), (f) ⊖ Green color signifies already complete.

⊖ Participants mistake inciting items for to-do items.

Technique 2.2 ⊕ All participants use the technique.
Example ⊕ Saves time to think about structure.
Remedies (c), (h) ⊕ Comment analysis could be automated.

⊖ Participants type the keywords manually.

Technique 2.3 ⊕ All participants use the technique.
Quick search ⊖ Some only use the quick search without commenting.
Remedies (c), (f)

Technique 2.4 ⊖ Most participants do not use the technique.
Expert feedback ⊖ Most users are concerned about annoying colleagues.
Remedies (b), (f)

Technique 2.5 ⊕ Launch button is noticed faster.
Guide ⊕ Understanding the Next button is intuitive.
Remedies (d), (e), (g) ⊕ The Next button acts as an obligation to comment.

⊖ Unable to make comments inside the guide.

improved, two new ones were added, and one was removed.
a) Technique 2.1 - Advice: In the current iteration, the

advice popup was transformed into a drop-down list imme-
diately visible when the comment tool is opened. Unlike in
previous iterations, this change ensures that every participant
notices and reads the advice. As stated in Table III, the green
background does not show positive effects. Also, though most
elements can be used like in a checklist, some can not because
they are intended to incite the reviewer to analyze the code
from another perspective.

b) Technique 2.2 - Example: A new technique emerged
from the advice technique 1.1 in the previous iteration. Here,
the technique uses an example, and participants follow the
structure presented in the example. The feedback confirms
appreciation, as shown in Table III.

c) Technique 2.3 - Quick search: As requested in the first
iteration, tasks should take less effort (i.e., fewer intermediary
clicks). The form used before is now replaced with a quick
search. It was used in different ways: first commenting,
then searching for code snippets related to the comment, or
searching for a solution before commenting. In the latter case,
however, the comment only refers to the selected solution from
the search without further explanation.

d) Technique 2.4 - Expert feedback: As for the previ-
ous technique, another help was requested: providing expert
feedback allows for countering the effects of decision fatigue

(a) Combination of advice and example.

(b) Combination of quick search and expert feedback.

Fig. 3. Combinations of techniques.

when the reviewer is prone to take a passive role. However,
as observed during the tests, most participants do not use the
expert feature because they feel they are experienced enough
or do not want to annoy a senior colleague.

e) Technique 2.5 - Guide: In this iteration, the launch
button for the guide is bigger and thus better visible, and
the button used to get to the next step is placed in a more
understandable location. As stated in Table III, it has a positive
impact. However, all participants complained about being
unable to comment while using the guide.

C. Final prototype

Multiple participants suggested combining techniques (and
their corresponding remedies) during the second usability test.

a) Technique 3.1 – Advice: Techniques 2.1 and 2.2 have
been combined to create constructive feedback, as shown in
Figure 3a. A new button is added to prepare the comment
structure faster: it copies the key phrases “Identified problem”,
“Why is it a problem” and “Suggestions” into the comment
field. The advice is located beneath the example.

b) Technique 3.2 – Assistant: Techniques 2.3 and 2.4 are
combined to mitigate decision fatigue’s effects (Figure 3b).

c) Technique 3.3 – Guide: Addressing the negative point
of Technique 2.5 (⊖ in Table III) would not support the
intended effect. Being able to comment continuously hinders
the reviewer from following the guide to understand the code
as a whole. Therefore, Technique 3.3 remains equivalent to
Technique 2.5.

V. USER EXPERIENCE TEST

This preliminary evaluation focuses on feedback about the
user interface and its usability, not the psychological aspects.
Those are left for future work with a full-extent experience
with a larger number of junior and senior developers.

An evaluation proceeds with each of the five participants, all
experienced developers (one junior and four seniors), familiar
with code review, as follows: (i) we ask the participant about
their experience in code review; (ii) depending on the answer,
we explain and demonstrate what code reviews are and how
tools can be used to assist the code review process; (iii) for

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Attra
ctiv

eness

Persp
icu

ity

Effic
iency

Dependability

Stim
ulatio

n

Nove
lty

S
co

re

Threshold

Excellent

Good

Above Average

Below Average

Bad

Technique

T3.1

T3.2

T3.3

Fig. 4. Results of the UEQ benchmark for the advice with example (T3.1), the
quick search with expert feedback (T3.2), and the guide (T3.3). Dots denote
mean values, and error bars indicate 95% confidence intervals.

each technique (Technique 3.1-3.3), we explain to the partici-
pant about the task (one per technique) to perform and proceed
with the test. The explanation, however, takes place without
mentioning the investigated aspects concerning cognitive bi-
ases. This is necessary so as not to bias the participant’s opin-
ion; (iv) after completing each task, the participant is asked
to fill out a standard User Experience Questionnaire (UEQ)
[25], [35], [36], [38]; (v) the experimenter (first author) also
notes observations about the participants’ behavior. The UEQ
is a heavily validated state-of-the-art questionnaire measuring
user experience following the predefined scales: Attractiveness
(do users like or dislike the product), Perspicuity (is it easy
to get familiar with the product?), Efficiency (can users solve
their tasks without unnecessary effort?), Dependability (does
the user feel in control of the interaction?), Stimulation (is
it exciting and motivating to use the product?), and Novelty
(is the product innovative and creative?). Additionally, we ask
every participant after the questionnaire for personal feedback
about the tested technique. All the collected data (UEQ and
observations) are available in our replication package [19].

We analyze questionnaire responses for each technique
to evaluate if it improves user experience using the UEQ
Data Analysis Tool [35]. This tool provides a quantitative
analysis, converting responses from 1 to 7 to a scale of -3
(most negative) to +3 (most positive). It classifies the scale
values into five categories, from excellent to bad, based on
a benchmark of user interfaces [37]. Results for the three
techniques are reported in Figure 4. Given the preliminary
nature of the evaluation, the small sample size results in
a less accurate quantitative analysis (as confirmed by the
sometimes large confidence intervals in Figure 4), yet it still
indicates trends in user experience, supported by the additional
qualitative feedback and observations (not reported in this
short paper due to space constraints).

The UEQ results indicate that users perceive Technique 3.1
- Advice as understandable and easy to learn. Users rated the
technique poorly on the stimulation scale, indicating it was
neither exciting nor motivating, and perceived it as conven-
tional. Users also find Technique 3.2 - Assistant interesting,

exciting, motivating, efficient and easy to use, aligning with
the technique’s goals. The technique is seen as innovative in
code reviews. Overall, the user experience results are positive,
reflecting the feedback, but responses focus more on the quick
search feature than the expert feedback. Finally, users find
Technique 3.3 - Guide highly attractive and interesting, with
clear indications of it being stimulating and innovative. It also
receives positive evaluations for efficiency, with users feeling
it meets expectations by providing support.

VI. CONCLUSION AND FUTURE WORK

Our base assumption was that non-constructive feedback
during code review provokes confirmation bias. Our prelimi-
nary results from applying Technique 3.1 - Advice suggest that
reviewers prefer guided, pre-defined structured comments but
are generally unmotivated to follow written advice. Overall,
advice and examples are used quickly, without spending
more than a few seconds to integrate them in the comments.
Reviewers are willing to incorporate examples into the review
process, and most agree that this technique has positive
effects. While this research does not quantitatively measure
the extent to which the technique prevents confirmation bias, it
includes a prototype solution and tests user experience. Further
investigation with different experimental setups are necessary
for representative results on confirmation bias prevention.

Our base hypothesis suggested that decision fatigue during
code review leads to incomplete comments. From this, we
proposed Technique 3.2 - Assistant. User experience tests
show that the search tool encourages adding code snippets
to comments and is well-received once users understand its
purpose. This technique shows significant potential to mitigate
decision fatigue. Conversely, the expert feedback tool is seen
as annoying by senior colleagues, with reviewers avoiding it
because they are confident in their comments. Currently, the
expert feedback prototype cannot mitigate decision fatigue
but could be improved through design adjustments. Overall,
the design and layout significantly influence the effectiveness
of the tools. User understanding and willingness to use a
technique depend heavily on the interface design, suggesting
that alternative designs might yield better results.

Our hypothesis also supports that decision fatigue during
code review leads to skipping short, large, or complex changes.
Technique 3.3 - Guide can prevent this by helping reviewers
address important changes individually. User experience tests
show that reviewers consistently use the guide, following it to
the end without skipping any changes. Participants appreciated
the guide, indicating it effectively prevents decision fatigue
from causing skipped reviews. Thus, the technique helps
mitigate certain effects of decision fatigue during code review.

The limited participant number constrained our quantitative
data, and some responses’ high variance calls for further inves-
tigation. However, these results still helped identify tendencies
and refine prototypes. For instance, user feedback suggests
that automating repetitive review tasks and providing context-
sensitive feedback (using, for instance, generative AI) could
help reduce decision fatigue. Our future research will focus

on design aspects for better outcomes and further prototype
development for a full-scale evaluation of the impact on
triggers of confirmation bias and the effect of decision fatigue.

REFERENCES

[1] H. R. Arkes, “Costs and benefits of judgment errors: Implications for
debiasing,” Psychological Bulletin, vol. 110, no. 3, pp. 486–498, 1991,
place: US Publisher: American Psychological Association.

[2] D. Badampudi, M. Unterkalmsteiner, and R. Britto, “Modern Code
Reviews—Survey of Literature and Practice,” ACM Transactions on
Software Engineering and Methodology, vol. 32, no. 4, 2023.

[3] A. S. Barroso, J. S. Madureira, M. S. Soares, and R. P. do Nascimento,
“Influence of human personality in software engineering-a systematic
literature review,” in International Conference on Enterprise Information
Systems, vol. 2. SCITEPRESS, 2017, pp. 53–62.

[4] R. F. Baumeister, E. Bratslavsky, M. Muraven, and D. M. Tice, “Ego
depletion: Is the active self a limited resource?” Journal of Personality
and Social Psychology, vol. 74, no. 5, pp. 1252–1265, 1998, place: US
Publisher: American Psychological Association.

[5] R. Bee and F. Bee, Constructive Feedback. CIPD Publishing, 1998.
[6] G. Calikli and A. Bener, “Empirical analyses of the factors affecting

confirmation bias and the effects of confirmation bias on software devel-
oper/tester performance,” in Proceedings of the 6th International Con-
ference on Predictive Models in Software Engineering, ser. PROMISE
’10. New York, NY, USA: ACM, Sep. 2010, pp. 1–11.

[7] S. Chattopadhyay, N. Nelson, A. Au, N. Morales, C. Sanchez, R. Pan-
dita, and A. Sarma, “A tale from the trenches: cognitive biases and
software development,” in Proceedings of the ACM/IEEE 42nd Interna-
tional Conference on Software Engineering. Seoul South Korea: ACM,
Jun. 2020, pp. 654–665.

[8] J. A. O. G. da Cunha and H. P. de Moura, “Towards a substantive
theory of project decisions in software development project-based or-
ganizations: A cross-case analysis of it organizations from brazil and
portugal,” in 2015 10th Iberian Conference on Information Systems and
Technologies (CISTI). IEEE, 2015, pp. 1–6.

[9] S. Danziger, J. Levav, and L. Avnaim-Pesso, “Extraneous factors in
judicial decisions,” Proceedings of the National Academy of Sciences,
vol. 108, no. 17, pp. 6889–6892, Apr. 2011.

[10] F. Ebert, F. Castor, N. Novielli, and A. Serebrenik, “An exploratory
study on confusion in code reviews,” Empirical Software Engineering,
vol. 26, no. 1, p. 12, Jan. 2021.

[11] F. Fagerholm, M. Felderer, D. Fucci, M. Unterkalmsteiner, B. Mar-
culescu, M. Martini, L. G. W. Tengberg, R. Feldt, B. Lehtelä,
B. Nagyváradi, and J. Khattak, “Cognition in Software Engineering: A
Taxonomy and Survey of a Half-Century of Research,” ACM Computing
Surveys, vol. 54, no. 11s, pp. 1–36, Jan. 2022.

[12] L. Faulkner, “Beyond the five-user assumption: Benefits of increased
sample sizes in usability testing,” Behavior Research Methods, Instru-
ments, & Computers, vol. 35, no. 3, pp. 379–383, Aug. 2003.

[13] B. Fischhoff, Debiasing. Cambridge University Press, 1982, p.
422–444.

[14] M. Fleischmann, M. Amirpur, A. Benlian, and T. Hess, “Cognitive biases
in information systems research: A scientometric analysis,” Tel Aviv,
p. 23, 2014.

[15] P. W. Gonçalves, E. Fregnan, T. Baum, K. Schneider, and A. Bacchelli,
“Do explicit review strategies improve code review performance? To-
wards understanding the role of cognitive load,” Empirical Software
Engineering, vol. 27, no. 4, p. 99, Jul. 2022.

[16] S. D. Gunawardena, P. Devine, I. Beaumont, L. P. Garden, E. Murphy-
Hill, and K. Blincoe, “Destructive Criticism in Software Code Review
Impacts Inclusion,” Proceedings of the ACM on Human-Computer
Interaction, vol. 6, no. CSCW2, pp. 1–29, Nov. 2022.

[17] M. G. Haselton, D. Nettle, and D. R. Murray, “The Evolution of
Cognitive Bias,” in The Handbook of Evolutionary Psychology. John
Wiley & Sons, Ltd, 2015, pp. 1–20.

[18] T. Jetzen, “Towards cognitive biases aware tools for improved code
review: a user-centered approach,” Master’s thesis, University of Namur,
2022.

[19] T. Jetzen, X. Devroey, and B. Vanderose, “Psychopass: Towards debi-
asing code review support replication package,” https://doi.org/10.5281/
zenodo.14803013.

[20] M. Jørgensen and E. Papatheocharous, “Believing is Seeing: Confirma-
tion Bias Studies in Software Engineering,” in 2015 41st Euromicro
Conference on Software Engineering and Advanced Applications, Aug.
2015, pp. 92–95.

[21] D. Kahneman, Thinking, fast and slow. Macmillan, 2011.
[22] D. Kahneman and A. Tversky, “Prospect theory: An analysis of decision

under risk,” Econometrica, vol. 47, no. 2, pp. 363–391, 1979.
[23] J. Klayman, “Varieties of Confirmation Bias,” in Psychology of Learning

and Motivation, J. Busemeyer, R. Hastie, and D. L. Medin, Eds.
Academic Press, Jan. 1995, vol. 32, pp. 385–418.

[24] D. Laibson, “Golden Eggs and Hyperbolic Discounting*,” The Quarterly
Journal of Economics, vol. 112, no. 2, pp. 443–478, May 1997.

[25] B. Laugwitz, T. Held, and M. Schrepp, “Construction and Evaluation of
a User Experience Questionnaire,” in HCI and Usability for Education
and Work, ser. LNCS, A. Holzinger, Ed., vol. 5298. Springer, 2008,
pp. 63–76.

[26] L. M. Leventhal, B. E. Teasley, and D. S. Rohlman, “Analyses of factors
related to positive test bias in software testing,” International Journal
of Human-Computer Studies, vol. 41, no. 5, pp. 717–749, Nov. 1994.

[27] J.-Y. Mao, K. Vredenburg, P. W. Smith, and T. Carey, “The state of
user-centered design practice,” Communications of the ACM, vol. 48,
no. 3, pp. 105–109, 2005.

[28] R. Mohanani, I. Salman, B. Turhan, P. Rodriguez, and P. Ralph,
“Cognitive Biases in Software Engineering: A Systematic Mapping
Study,” IEEE Transactions on Software Engineering, vol. 46, no. 12,
pp. 1318–1339, Dec. 2020.

[29] D. Norman, The design of everyday things: Revised and expanded
edition. Basic books, 2013.

[30] D. A. Norman and S. W. Draper, User Centered System Design; New
Perspectives on Human-Computer Interaction. USA: L. Erlbaum
Associates Inc., 1986.

[31] G. A. Pignatiello, R. J. Martin, and R. L. Hickman, “Decision fatigue:
A conceptual analysis,” Journal of Health Psychology, vol. 25, no. 1,
pp. 123–135, Jan. 2020.

[32] A. Rainer and S. Beecham, “A follow-up empirical evaluation of
evidence based software engineering by undergraduate students,” NA,
Jun. 2008.

[33] C. Sadowski, E. Söderberg, L. Church, M. Sipko, and A. Bacchelli,
“Modern code review: a case study at google,” in Proceedings of
the 40th International Conference on Software Engineering: Software
Engineering in Practice, ser. ICSE-SEIP ’18. ACM, May 2018, pp.
181–190.

[34] I. Salman, B. Turhan, and S. Vegas, “A controlled experiment on time
pressure and confirmation bias in functional software testing,” Empirical
Software Engineering, vol. 24, no. 4, pp. 1727–1761, Aug. 2019.

[35] D. M. Schrepp, “User experience questionnaire handbook - ueq-
online.org,” Dec. 2019.

[36] M. Schrepp, A. Hinderks, and J. Thomaschewski, “Applying the User
Experience Questionnaire (UEQ) in Different Evaluation Scenarios,” in
Design, User Experience, and Usability. Theories, Methods, and Tools
for Designing the User Experience, ser. LNCS, D. Hutchison, T. Kanade,
J. Kittler, J. M. Kleinberg, A. Kobsa, F. Mattern, J. C. Mitchell, M. Naor,
O. Nierstrasz, C. Pandu Rangan, B. Steffen, D. Terzopoulos, D. Tygar,
G. Weikum, and A. Marcus, Eds., vol. 8517. Springer, 2014, pp. 383–
392.

[37] ——, “Construction of a Benchmark for the User Experience Ques-
tionnaire (UEQ),” International Journal of Interactive Multimedia and
Artificial Intelligence, vol. 4, no. 4, p. 40, 2017.

[38] ——, “Design and Evaluation of a Short Version of the User Experience
Questionnaire (UEQ-S),” International Journal of Interactive Multime-
dia and Artificial Intelligence, vol. 4, no. 6, p. 103, 2017.

[39] H. H. Sievertsen, F. Gino, and M. Piovesan, “Cognitive fatigue influ-
ences students’ performance on standardized tests,” Proceedings of the
National Academy of Sciences, vol. 113, no. 10, pp. 2621–2624, Mar.
2016.

[40] D. Spadini, G. Çalikli, and A. Bacchelli, “Primers or reminders?: the
effects of existing review comments on code review,” in Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering.
Seoul South Korea: ACM, Jun. 2020, pp. 1171–1182.

[41] B. E. Teasley, L. M. Leventhal, C. R. Mynatt, and D. S. Rohlman, “Why
software testing is sometimes ineffective: Two applied studies of positive
test strategy,” Journal of Applied Psychology, vol. 79, no. 1, pp. 142–
155, 1994, place: US Publisher: American Psychological Association.

[42] A. Tversky and D. Kahneman, “Judgment under Uncertainty: Heuristics
and Biases,” Science, vol. 185, no. 4157, pp. 1124–1131, Sep. 1974.

[43] A. Waggoner Denton, “Improving the Quality of Constructive Peer Feedback,” College Teaching, vol. 66, no. 1, pp. 22–23, Jan. 2018.

