
Commonality-Driven Unit Test Generation

Björn Evers, Pouria Derakhshanfar[0000−0003−3549−9019], Xavier
Devroey[0000−0002−0831−7606], and Andy Zaidman[0000−0003−2413−3935]

Delft University of Technology, Delft, The Netherlands
b.evers@student.tudelft.nl, p.derakhshanfar@tudelft.nl,

x.d.m.devroey@tudelft.nl, a.e.zaidman@tudelft.nl

Abstract. Various search-based test generation techniques have been
proposed to automate the generation of unit tests fulfilling different cri-
teria (e.g., line coverage, branch coverage, mutation score, etc.). Despite
several advances made over the years, search-based unit test generation
still suffers from a lack of guidance due to the limited amount of in-
formation available in the source code that, for instance, hampers the
generation of complex objects. Previous studies introduced many strate-
gies to address this issue, e.g., dynamic symbolic execution or seeding,
but do not take the internal execution of the methods into account. In
this paper, we introduce a novel secondary objective called commonality
score, measuring how close the execution path of a test case is from re-
producing a common or uncommon execution pattern observed during
the operation of the software. To assess the commonality score, we im-
plemented it in EvoSuite and evaluated its application on 150 classes
from JabRef, an open-source software for managing bibliography ref-
erences. Our results are mixed. Our approach leads to test cases that
indeed follow common or uncommon execution patterns. However, if the
commonality score can have a positive impact on the structural coverage
and mutation score of the generated test suites, it can also be detrimental
in some cases.

Keywords: search-based software testing · automated unit testing ·
common paths coverage · secondary objective

1 Introduction

Search-based test case generation enables the automated generation of test cases
according to predefined criteria. Among the different approaches, white-box
search-based test case generation [13,15,29] relies on evolutionary algorithms to
generate test cases from source code and maximize structural coverage [15, 29]
or mutation score [16]. Previous research has shown that automatically gener-
ated tests are effective for coverage and fault finding [3,23,28], can also find real
faults [2], and are useful for debugging [5].

Despite several advances, search-based unit test generation still faces many
challenges. Among those are (i) the crafting of complex objects and values used
during test generation [2], and (ii) the indirect coverage of encapsulated elements

2 Björn Evers, Pouria Derakhshanfar, Xavier Devroey, and Andy Zaidman

(e.g., private methods and class attributes) through the invocation of specific
paths in public methods [32]. Various approaches address those challenges by
relying on dynamic symbolic execution to generate complex objects and values
using constraint solvers [18,19,21,24]; seeding to identify objects and values from
the application source and test code that are later reused during the search [31];
or class usages, learned from static analysis of the source code [8,17] and dynamic
execution of the existing tests [8], and used to generate realistic objects.

However, if complex objects and values can indeed lead to an improvement
in the coverage, it does not always succeed in covering all the elements of a class
under test. For instance, if the indirect coverage of a private method requires
specific executions paths in a public method, the current fitness functions will
not be able to provide sufficient guidance to the search process [32].

In this paper, we hypothesize that common and uncommon execution paths,
observed during the actual operation of the system, can lead to better guidance
of the search process, and hence, better coverage. Complementing previous work
on seeding [31], which is aimed at triggering different execution paths in the
methods under test, we consider the commonality of those execution paths. For
that, we approximate commonality using weights for the different code blocks,
and define a secondary objective called the commonality score, denoting how
close an execution path is from common or uncommon executions of the software.

We implemented the commonality score in EvoSuite [13] and evaluated it
on 150 classes from JabRef, an open-source bibliography reference manager, for
common and uncommon behaviors. We compare the commonality score (RQ.1),
the structural coverage (RQ.2), and the fault-finding capabilities (RQ.3) of the
thus generated tests to tests generated by the standard EvoSuite implementa-
tion. Our results are mixed but show that this secondary objective significantly
improves the number of covered common paths in 32.6% of the classes. Although
the average structural coverage remains stable, the commonality score signifi-
cantly improves the line (resp. branch) coverage in three (resp. four) classes,
but also negatively impacts the coverage for eight (resp. nine) classes. Finally,
the commonality score impacts the number of killed mutants for 22 classes
(11 positively and 11 negatively). Our implementation is openly available at
https://github.com/STAMP-project/evosuite-ramp, and the replication package
of our evaluation and data analysis have been uploaded to Zenodo [11,12].

2 Background and related work

2.1 Search-based unit test generation

Search-based unit test generation has been extensively investigated by prior
studies [13, 15, 29]. These studies have confirmed that it achieves a high level of
coverage [15,29], detects faults in real-world applications [2,16], and reduces the
debugging costs [30]. Most search-based unit test generation approaches abstract
the source code of a method to a control flow graph:

Definition 1 (Control Flow Graph (CFG) [1]). A control flow graph for
a method m is a directed graph G = (B,E), where B is the set of basic blocks

Commonality-Driven Unit Test Generation 3

(i.e., sequences of statements that do not have any branch before the last state-
ment), E is the set of control flow edges connecting the basic blocks.

For instance, for the method with the pseudo-code presented in Figure 1(a), the
corresponding CFG for this method is depicted in Figure 1(b).

Search-based software unit test generation approaches use meta-heuristics
to evolve a set of test cases. These techniques start with generating an initial
population of randomly produced test cases. The fitness of each individual in
the population is evaluated using a fitness function, which is usually defined
according to the coverage in the CFGs of the target class. Next, a subset of
the fittest individuals is selected for evolution and leads to the generation of a
new population. The evolving process contains three steps: (i) crossover, which
randomly mixes two selected individuals to generate new offspring; (ii) mutation,
which randomly changes, adds, or removes a statement in an individual; and (iii)
insertion, which reinserts the modified individuals into the population for the
next iteration of the algorithm. This process continues until either satisfactory
individuals are found, or the time budget allocated for the search is consumed.
Among the different approaches, EvoSuite [13] uses genetic algorithms to evolve
Java test suites in order to cover a class under test.

MOSA [27] and DynaMOSA [29] are two new many-objectives genetic algo-
rithms proposed for unit test generation. These algorithms consider test cases
as individuals and incorporate separate fitness functions for separate coverage
goals (e.g., covering each branch in the CFGs will be an independent search
objective). They use non-dominated fronts to generate test cases in the direc-
tion of multiple coverage goals in parallel, and thereby generate tests aiming to
cover specific goals, while not letting the test generation be trapped for covering
a single goal. Panichella et al. [27] show that MOSA outperforms the original
EvoSuite approach in terms of structural coverage and mutation score.

In this paper, we use MOSA to automatically generate test cases according
to the collected logs during the production phase. Future work includes the
evaluation of our approach with other multi and many-objectives algorithms,
like DynaMOSA.

2.2 Usage-based test generation

The majority of search-based test generation techniques aim to achieve high cov-
erage for various metrics (e.g., line coverage, branch coverage, or more recently
mutation coverage). Despite their considerable achievements, they do not con-
sider the execution patterns observed in production use for automatic generation
of unit tests. Hence, Wang et al. [37] investigated how developer-written tests
and automatically generated tests represent typical execution patterns in pro-
duction. Their study confirms that these tests are not a proper representation
of real-world execution patterns.

The behavior of actual users may reveal faults, which are not detected by
the existing test cases. For instance, a piece of code in the software under test
that is not often used in practice may be left relatively untested because it is

4 Björn Evers, Pouria Derakhshanfar, Xavier Devroey, and Andy Zaidman

rarely exercised in production. A recent method from Wang et al. [38], based on
symbolic execution, recreates users behaviors using log data from a system run
in production, which has allowed to find the same faults in a system encountered
by a user. This paper aims to expand upon generating tests based on the actual
usage of a system at the unit level. In contrast to Wang et al. [38], where the aim
is to replicate a full behavior executed by a user by using symbolic execution,
we aim to guide the search process in a genetic algorithm towards executing
common or uncommon behaviors. In the same vein as Wang et al. [38], log data
is used to determine the execution counts of code branches.

Other approaches consider user feedback [20], or usage models of the applica-
tion and statistical testing [9,22,34,35] to generate and prioritize test cases at the
system level. A usage model consists in a state machine where transitions have
been labelled with a probability of being executed. Unlike those approaches, we
consider test case generation at the unit level.

3 Test generation for common and uncommon behaviors

Intuitively, commonality describes to what extent a test exercises code branches
that are executed often during the normal operation of the system under test. If
a test executes branches that are often (respectively rarely) executed in practice,
it will have a high (respectively low) commonality score. The commonality score
has a value between 0 and 1 and is computed based on an annotated control
flow graph [1]:

Definition 2 (Annotated Control Flow Graph). An annotated control flow
graph is a directed graph G = (B,E, γ), where G = (B,E) is a control flow
graph, and γ : B → R is a labelling function giving for the basic blocks in B an
execution weight denoting how often the block is executed during operations.

The execution weights can be derived from the operation logs of the system, an
instrumented version of the system (like in our evaluation), or assigned manually.

Let us define the commonality score. For a test case, its commonality score
depends only on the branches it covers and on the highest and lowest execution
weights in the class under test. Branches without execution weights are ignored
and branches covered multiple times (e.g., in a loop) are counted only once.

Definition 3 (Commonality score). For a test case t executing n basic blocks
bi labelled by a function γ, the highest execution weight in the class under test
h, the lowest execution weight in the class under test l, the commonality score
of t, denoted c(t) is defined as:

c(t) =

∑n
i=1 (γbi − l)
n× (h− l)

The commonality score for a test suite s is defined as the average of the com-
monality scores of its test cases: c(s) =

(∑
ti∈s c(ti)

)
/|s|.

Commonality-Driven Unit Test Generation 5

/* Branch 1 */

1 if condition1 then
/* Branch 2 */

2 ...;

3 else
/* Branch 3 */

4 ...;
5 if condition2

then
/* Branch 4

*/

6 ...;

/* Branch 5 */

7 ...;

/* Branch 6 */

8 ...;

(a) Pseudo-code.

b1

b2 b3

b4

b5

b6

(b) CFG.

b1

γ1: 10

b2

γ2: 3

b3

γ3: 7

b4

γ4: 1

b5

γ5: 7

b6

γ6: 10

(c) ACFG.

Fig. 1. Example of pseudo-code and its corresponding annotated control flow graph.
The γi indicate to the execution weight of the node.

For instance, considering a class containing a single method with the pseudo-
code presented in Figure 1(a), the corresponding annotated control flow graph
in Figure 1(c), and a test suite containing three test cases t1 covering (b1, b2, b6),
t2 covering (b1, b3, b5, b6), and t3 covering (b1, b3, b4, b5, b6). The commonality
scores are c(t1) = ((10− 1)) + (3− 1) + (10− 1)) / (3× (10− 1)) = 20/27 ≈
0.741, c(t2) = 5/6 ≈ 0.833, and c(t3) = 2/3 ≈ 0.667.

3.1 Commonality as a secondary objective

Secondary objectives are used to choose between different test cases in case of a
tie in the main objectives. For instance, the default secondary objective used by
MOSA [27] minimizes the test case length (i.e., the number of statements) when
two test cases satisfy the same main objectives (e.g., cover the same branches).
Using test case length minimization as a secondary objective addresses the bloat-
ing effect [33] by preventing the search process from always generating longer
test cases. Since this is a desirable property, we combine the test case length
minimization with the commonality of the test case using a weighted sum when
comparing two test cases.

Definition 4 (Commonality secondary objective). For two test cases t1,
t2 with lengths l1, l2, the comparison between the two test cases is done using
the following formula:

common(t1, t2) =

(
α
(

l1
l2

)
+ β

(
1−c(t1)
1−c(t2)

))
(α+ β)

6 Björn Evers, Pouria Derakhshanfar, Xavier Devroey, and Andy Zaidman

If common(t1, t2) ≤ 1, then t1 is kept, otherwise t2 is kept.

Similarly, for the uncommonality between two test cases, we will have the fol-
lowing definition.

Definition 5 (Uncommonality secondary objective). For two test cases
t1, t2 with lengths l1, l2, the comparison between the two test cases is done using
the following formula:

uncommon(t1, t2) =

(
α
(

l1
l2

)
+ β

(
c(t1)
c(t2)

))
(α+ β)

If uncommon(t1, t2) ≤ 1, then t1 is kept, otherwise t2 is kept.

In our evaluation, we use commonality and uncommonality with MOSA to an-
swer our different research questions.

4 Empirical evaluation

To assess the usage of commonality as a secondary objective for test case gen-
eration, we performed an empirical evaluation using 150 classes from JabRef1,
an open source bibliography reference manager, to answer the following research
questions:

RQ.1 How does the commonality score of the generated tests compare when
using the common, uncommon, and default secondary objectives?

RQ.2 How does the line and branch coverage of the generated tests compare
when using the common, uncommon, and default secondary objectives?

RQ.3 How does the mutation score of the generated tests compare when using
the common, uncommon, and default secondary objectives?

We implemented the secondary objectives from Section 3 in EvoSuite [13], a
state-of-the-art white-box unit test generator tool for Java. Our implementation
is openly available at https://github.com/STAMP-project/evosuite-ramp, and
the replication package of our evaluation and data analysis have been uploaded
to Zenodo [11,12].

4.1 Subject and execution weights

Collecting execution weights For our evaluation, we choose JabRef (46 KLOC),
an open-source Java bibliography reference manager with a graphical user inter-
face working with BibTex files. To determine the execution weights of the differ-
ent branches, we instrumented JabRef using Spoon2 and added log statements
producing a message with a unique identifier each time a branch is executed.

1 https://www.jabref.org
2 http://spoon.gforge.inria.fr/

Commonality-Driven Unit Test Generation 7

These identifiers are then mapped to a source code location, identified by the
class name, the method name, and the line number. Furthermore, the number of
occurrences of the identifier in the log messages is established. We then asked five
people (including the first author) to use our modified JabRef implementation
to perform various tasks (adding a reference, updating a reference, removing a
reference, etc.) and collected the produced logs. In an industrial context, oper-
ations logs can be analyses and traced back to the source code to identify the
execution weights [39].

Classes under test We sampled 150 classes. We excluded classes from the org.-

jabref.gui and org.jabref.logic.importer.fileformat packages as they
respectively work with JavaFX and perform input-output operations. From the
remaining classes and following the best practices of the search-based unit testing
community [26], we selected 75 classes with the highest cyclomatic complexity,
as classes with a higher cyclomatic complexity are harder to process for unit
test generation tools and 38 classes with the largest number of lines of code.
Additionally, we selected 37 classes that were executed the most by our modified
JabRef implementation.

Configuration parameters We ran EvoSuite with the default coverage criteria
(line, branch, exception, weak mutation, input, output, method, method with-
out exceptions, and context branch) and three different secondary objectives:
(i) default , minimizing the test case length, (ii) commonality , as described in
Definition 4, and (iii) uncommonality , as described in Definition 5. We executed
EvoSuite on each class under test 30 times with the MOSA algorithm [27] and
a search budget of three minutes, offering a good compromise between runtime
and coverage [15,28]. All other configuration parameters were left to their default
value.

4.2 Data analysis

For each of the 13,500 execution (150 classes× 30 repetitions× 3 configurations),
we collected the commonality score and structural coverage information from
EvoSuite. Additionally, we performed a mutation analysis of the generated test
suites using Pit [7]. For 46 classes (out of 150), EvoSuite could not complete 30
executions using our different configurations. We excluded those classes to keep
the comparison fair and performed our analysis on the 104 remaining classes.

To compare the commonality score, the structural coverage, and the muta-
tion score, we used the non-parametric Wilcoxon Rank Sum test, with α = 0.05
for Type I error, and the Vargha-Delaney statistic Â12 [36] to evaluate the effect

size between two configurations. An Â12 value lower than 0.5 for a pair of con-
figurations (A,B) indicates that A increases the score or coverage compared to
B, and a value higher than 0.5 indicates the opposite. The Vargha-Delaney mag-
nitude measure also allows partitioning the results into three categories having
large, medium, and small impact [36].

8 Björn Evers, Pouria Derakhshanfar, Xavier Devroey, and Andy Zaidman

●●●

●

●●
●
●●
●

●●

●
●
●●●
●
●●
●
●●●
●●

●●●

●●
●
●●
●
●●

●

●
●
●
●

●

●

●

●●
●●●●
●
●

●

●●●
●
●
●

●

●●●●
●
●

●●
●
●

●

●
●
●●
●
●

●

●●
●

●●

●●
●
●

●●

●
●

●

●
●
●●
●

●

●●

●●

●
●
●●
●
●●●●

●

●●
●
●●
●

●●

●

●●

●●●●
●
●

●

●●

●
●
●
●

●

●

●

●●●
●
●
●
●
●

●

●
●●
●
●●
●●
●

●

●

●●
●
●

●

●●
●

●●

●●
●
●●
●

●●

●●
●
●●
●

●
●
●

●●●●
●

●

●●

●

●●
●
●●●
●

●

●

●

●●
●
●●●
●

●●●

●●
●
●
●

●

●●
●
●●●●
●●
●●

●●
●
●
●

●

●
●●●●
●
●●

●
●
●●
●

●

●●

●

●●●
●
●

●
●
●● ●●

●●

●

●

●

●●

●

●

●

●

●●●●●

●

●

●

●

●

●

●●●

●

●●●

●

●●

●

●

●

●●●

●

●●●●

●

●●

●

●●●●

●

●●●

●

●●

●

●

●

●

●

●●●●

●●

●●●

●

●●●

●

●

●●

●

●

●●

●

●

●

●

●●

●●●●●

●

●

●

●●

●

●●

●

●

●●●●

●

●

●

●

●

●

●

●●●●

●●●

●

●●
●
●

●

●●
●
●
●
●
●
●●●
●
●
●
●

●
●

●●

●
●
●●

●

●
●
●●
●
●●●

●

●
●
●
●
●
●
●

●

●●
●
●●●
●
●

●
●
●●●●●●

●
●
●●●●
●
●
●●●●
●
●
●
●
●
●
●●
●
●●●
●●
●●●●
●
●
●
●
●●●
●
●●●●
●
●
●
●
●●●

●●

●●●●

●

●●●●●●●●●●●

●

●●●●●●

●

●●●●●●●●

●

●●

●

●●●

●

●●●●●●

●●

●●●●●●●

●

●●●

●

●●●

●●

●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●

●

●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●

0.00

0.25

0.50

0.75

1.00

default common uncommon
Configuration

C
om

m
on

al
ity

 s
co

re

(a) Test cases commonality scores.

●

●

●●

●●

●

●●
0.25

0.50

0.75

common uncommon
Configuration

V
D

(b) Effect sizes Â12 .

7

5

22

5

1

15

common large

common medium

common small

uncommon small

uncommon medium

uncommon large

20 10 0 10 20
of cases

V
D

 m
ag

ni
tu

de
 p

er
 c

on
fig

.

status

Lose
Win

(c) Effect sizes Â12 magnitudes.

Fig. 2. Test cases commonality values and comparison to default . Diamonds (�) indi-
cate mean values and horizontal bars (–) indicate median values.

5 Results

5.1 Commonality score (RQ.1)

In this section we answer the question: How does the commonality score of
the generated tests compare when using the common, uncommon, and default
secondary objectives?

Figure 2 illustrates the impact of using commonality and uncommonality , as
the secondary objective, on the commonality score of the generated test cases.
Figure 2(a) shows that the average and median of the commonality score is im-
proved by 8% and 12%, respectively, compared to default when using commonal-
ity as secondary objective. In parallel, using uncommonality as secondary objec-
tive reduces the commonality score by, on average, 5% (2.5% for median) com-
pared to default . Moreover, Figure 2(c) presents the number of cases (i.e., classes
used as the target class for unit testing), in which the application of commonal-

Commonality-Driven Unit Test Generation 9

ity and uncommonality significantly (p-value < 0.05) changes the commonality
score with effect size magnitude of large, medium, or small. As we can see in
this figure, utilizing commonality always leads to a significant improvement in
the commonality score (blue bars), and in contrast, using uncommonality always
reduces this score (red bars). In total, commonality significantly improves the
commonality score in 34 cases (32.6% of classes), and uncommonality signifi-
cantly reduces this score in 21 classes (20.1% of cases). Figure 2(b) depicts the
effect sizes of differences observed in these cases. Consistent with the previous
figures, the average effect size (Â12) achieved by commonality is higher than 0.5
(i.e., commonality score has been improved). However, this value is lower than
0.5 for uncommonality .

Summary Using commonality as secondary objective in the EvoSuite search-
based test case generation process leads to test cases that exhibit an improved
commonality score. In parallel, the application of uncommonality leads to the
reduction of the commonality score.

5.2 Structural coverage (RQ.2)

In this section we provide an answer to the following research question: How
does the line and branch coverage of the generated tests compare when using the
common, uncommon, and default secondary objectives?

Figure 3 shows the line and branch coverage achieved by using commonality
and uncommonality as secondary objectives compared to default . Figure 3(a)
indicates that the average coverage is the same for all of the assessed configura-
tions.

Looking at the comparison of the structural coverage values achieved by
each secondary objective in each class, we can see that the line and branch
coverage is significantly impacted by commonality and uncommonality in some
cases. Figure 3(c) presents the number of cases that these secondary objectives

significantly (p-value < 0.05) reduce (Â12 < 0.5) or increase (Â12 > 0.5) the
line and branch coverage with effect size magnitude small, medium, or large.
According to this figure, in general, utilizing commonality leads to a significant
improvement for line and branch coverage in three and four classes, respectively.
Nevertheless, this secondary objective reduced the line and branch coverage in
eight and nine classes, respectively. A list of these classes is provided as the
supplementary material to this submission.

Also, we can see a similar result for uncommonality : significant improvements
in three and five classes and significant reductions in seven and nine cases for
line and branch coverage. Since the number of cases in which commonality and
uncommonality lead to a significantly lower structural coverage is higher than
the the number of cases in which we see a significant improvement in coverage,
the average effect size of differences (Figure 3(b)) is slightly less than 0.5 for both
line (0.47 for both secondary objectives) and branch coverage (0.46 for both).

10 Björn Evers, Pouria Derakhshanfar, Xavier Devroey, and Andy Zaidman

Branch coverage Line coverage Mutation score

default common uncommon default common uncommon default common uncommon

0.00

0.25

0.50

0.75

1.00

Configuration

V
al

ue

(a) Test suites coverage and mutation score.

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

Branch coverage Line coverage Mutation score

common uncommon common uncommon common uncommon

0.25

0.50

0.75

1.00

Configuration

V
D

(b) Effect sizes Â12.

4 1
5

3

4 1
5 1

3

3 1
5

2

3 1
4

2

3 2
3 1

5 8

8
4 1

7

Branch coverage Line coverage Mutation score

5 0 5 5 0 5 5 0 5

common large

common medium

common small

uncommon small

uncommon medium

uncommon large

of cases

V
D

 m
ag

ni
tu

de
 p

er
 c

on
fig

.

status

Lose
Win

(c) Effect sizes Â12 magnitudes.

Fig. 3. Test suites coverage and mutation score, and comparison to default. Diamonds
(�) indicate mean values and horizontal bars (–) indicate median values.

Summary On average, using commonality or uncommonality does not impact
the line and branch coverage. However, these two secondary objectives can sig-
nificantly impact the structural coverage in specific cases.

5.3 Mutation analysis (RQ.3)

In the final research question we reflect on How does the mutation score of
the generated tests compare when using the common, uncommon, and default
secondary objectives?

Figure 3(a) depicts the mutation score achieved by using commonality and
uncommonality compared to default . Like line and branch coverage, the aver-
age mutation scores achieved by these secondary objectives is similar to the one
achieved by default . However, Figure 3(c) shows that commonality and uncom-
monality can significantly (p-value < 0.05) impact the mutation score achieved
by unit test generation. The commonality secondary objective significantly in-
creases the number of mutants killed for 11 classes but, at the same time, also
decreases the mutation score in another 11 cases. Moreover, uncommonality sig-
nificantly changes the mutation score in 20 cases (8 wins against 12 losses).
Figure 3(b) shows the effect size of differences in these cases for both common-
ality and uncommonality secondary objectives. According to this Figure, the
average Â12 estimations are 0.49 and 0.47. Since these values are lower than 0.5,
on average, the difference achieved by these two secondary objectives is negative.
However, the outliers in this figure show us that the effect sizes of commonal-
ity above 0.75 in some specific cases. Hence, the graphs in Figure 3(c) indicate

Commonality-Driven Unit Test Generation 11

that using commonality and uncommonality can improve the mutation score in
specific cases.

Summary On average, using commonality or uncommonality does not have any
effect on the mutation score achieved by the generated test suites. However,
these two secondary objectives can significantly change the killed mutants in
some cases.

6 Discussion

6.1 Execution weights

In our evaluation, we collected execution weights using an instrumented version
of JabRef distributed to five different users. As a result, a large number of
log messages allowed us to have execution weights for many different classes.
Such data collection is not realistic in an industrial setting as the collection and
analysis of log data is challenging for large applications [4]. It is likely that the
collected data will not cover the complete system but only a subset of its classes.

However, we believe that the development of scalable software analytics prac-
tices [25] represents an opportunity to include information from the software op-
erations environment in various development activities, including testing [4, 6].
For instance, Winter et al. [39] recently brought information about the number
of times a log statement is executed to the developer’s IDE to raise awareness
about the load it represented during the operations of the system. Similar infor-
mation can be collected for seeding [8, 31] or annotating a control flow graph,
like in our approach, and allow developers to generate new tests from their IDE.

Finally, our current approach considers execution weights individually to
approximate usages, which allows us to compute a commonality score quickly.
Different definitions of the commonality score based, for instance, on full and
partial execution paths identified from the operations logs are possible. Those
finer grained definitions of commonality would allow to take multiple executions
of the same code blocks (like loops) into account, at the expense of a higher
computational cost. Exploration and evaluation of such definitions are left for
future work.

6.2 Impact on mutation analysis

After manual investigation of the generated tests3, we saw that the classes on
which commonality performs relatively well are often executed. The class on
which the performance was especially good compared to default was an enum
class (org.jabref.logic.util.StandardFileType). In a large majority of the
cases (25 out of 30), the tests generated using the commonality secondary ob-
jective contain a method sequence that is not present in the tests generated
by default . We inspected the execution counts of individual branches stemming

3 The results and complete manual analysis are available online [10–12].

12 Björn Evers, Pouria Derakhshanfar, Xavier Devroey, and Andy Zaidman

from the operational use of the system. From this inspection, we found a single
branch in the code of method getExtensions that has been executed as part of
the usage scenarios from all participants.

This method is consistently involved in the test cases that kill the mutants
that the tests generated by default fail to kill most of the time. This supports
our initial assumption that using commonality can drive the search process to
cover the code in a different way, possibly finding different kinds of faults.

6.3 Usefulness for debugging

The end-goal of any test suite is to identify faults in source code and help the
developer during her debugging activities. Our evaluation measured the fault-
finding capabilities of the generated test suites, but did not investigate their
usefulness for debugging. Previous research has confirmed that automatically
generated tests can find faults in real software [2] and are useful for debugging [5].

However, there remain several challenges, like the understandability of the
generated tests [2, 14]. Since the commonality and uncommonality secondary
objectives aim to influence how the lines in a method are covered, we expect
that it will also have an impact on the understandability of the generated tests.
Future research will include the assessment of the debugging capabilities of the
generated tests (e.g., understandability, performance, readability, etc.).

6.4 Threats to the validity

Internal validity We repeated each execution of EvoSuite 30 times to take the
randomness of the generation process into account in our data analysis. We have
tested our implementation of the commonality and uncommonality secondary
objectives to reduce bugs’ chance of influencing our results.

External validity We gathered execution data needed from a small number of
people in a relatively structured manner. We cannot guarantee that those exe-
cutions are representative of all the usages of JabRef. However, we believe that
the diversity of the tasks performed by our users is enough for this evaluation.
Also, the evaluation was performed using only one case study. Future research
includes the repetition of the assessment on other Java applications.

Construct validity We relied on the reports produced by EvoSuite for struc-
tural coverage and the reports produced by Pit for mutation analysis to compare
our different secondary objectives. The usage of those standard metrics allows
the comparison of our results with other search-based unit test generation ap-
proaches.

Conclusion validity Our conclusions were only drawn based on statistically sig-
nificant results with α = 0.05. We used the standard non-parametric Wilcoxon
Rank Sum test for significance and the Vargha-Delaney statistic for the effect
size.

Commonality-Driven Unit Test Generation 13

7 Conclusion and future work

In this paper, we introduced the commonality score, denoting how close an execu-
tion path is from common or uncommon executions of the software in production,
and the commonality and uncommonality secondary objectives for search-based
unit test generation. We implemented our approach in EvoSuite and evaluated
it on JabRef using execution data from real usages of the application. Our
results are mixed. The commonality secondary objective leads to an increase
of the commonality score, and the uncommonality secondary objective leads to
a decrease of the score, compared to the default secondary objective (RQ.1).
However, results also show that if the commonality score can have a positive
impact on the structural coverage (RQ.2) and mutation score (RQ.3) of the
generated test suites, it can also be detrimental in some cases. Future research
includes a replication of our evaluation on different applications and using dif-
ferent algorithms (e.g., DynaMOSA) to gain a deeper understanding of when
to apply commonality and uncommonality secondary objectives; the exploration
and assessment of different definitions of commonality; and an assessment of the
generated tests regarding their usefulness for debugging.

Acknowledgements

This research was partially funded by the EU Horizon 2020 ICT-10-2016-RIA
“STAMP” project (No.731529).

References

1. Allen, F.E.: Control flow analysis. ACM SIGPLAN Notices 5(7), 1–19 (jul 1970).
https://doi.org/10.1145/390013.808479

2. Almasi, M.M., Hemmati, H., Fraser, G., Arcuri, A., Benefelds, J.: An Industrial
Evaluation of Unit Test Generation: Finding Real Faults in a Financial Application.
In: ICSE-SEIP’17. pp. 263–272. IEEE (may 2017). https://doi.org/10.1109/ICSE-
SEIP.2017.27

3. Campos, J., Ge, Y., Albunian, N., Fraser, G., Eler, M., Arcuri, A.: An em-
pirical evaluation of evolutionary algorithms for unit test suite generation. IST
104(August), 207–235 (2018). https://doi.org/10.1016/j.infsof.2018.08.010

4. Candido, J., Aniche, M., van Deursen, A.: Contemporary Software Monitoring: A
Systematic Literature Review (2019), http://arxiv.org/abs/1912.05878

5. Ceccato, M., Marchetto, A., Mariani, L., Nguyen, C.D., Tonella, P.: Do Automat-
ically Generated Test Cases Make Debugging Easier? An Experimental Assess-
ment of Debugging Effectiveness and Efficiency. TOSEM 25(1), 1–38 (dec 2015).
https://doi.org/10.1145/2768829

6. Chen, B., Song, J., Xu, P., Hu, X., Jiang, Z.M.J.: An automated approach to
estimating code coverage measures via execution logs. In: ASE’18. pp. 305–316.
No. 3, ACM Press (2018). https://doi.org/10.1145/3238147.3238214

7. Coles, H., Laurent, T., Henard, C., Papadakis, M., Ventresque, A.: PIT: a prac-
tical mutation testing tool for Java. In: ISSTA 2016. pp. 449–452. ACM (2016).
https://doi.org/10.1145/2931037.2948707

14 Björn Evers, Pouria Derakhshanfar, Xavier Devroey, and Andy Zaidman

8. Derakhshanfar, P., Devroey, X., Perrouin, G., Zaidman, A., Deursen, A.: Search-
based crash reproduction using behavioural model seeding. STVR 30(3), e1733
(may 2020). https://doi.org/10.1002/stvr.1733

9. Devroey, X., Perrouin, G., Cordy, M., Samih, H., Legay, A., Schobbens, P.Y.,
Heymans, P.: Statistical prioritization for software product line testing: an expe-
rience report. SoSyM 16(1), 153–171 (feb 2017). https://doi.org/10.1007/s10270-
015-0479-8

10. Evers, B.: Unit test generation for common and uncommon be-
haviors. master thesis, Delft University of Technology (2020),
http://resolver.tudelft.nl/uuid:6d8a1835-9054-4e4a-a85f-99ac592978da

11. Evers, B., Derakhshanfar, P., Devroey, X., Zaidman, A.: Unit test gen-
eration for common and uncommon behaviors: dataset (Jun 2020).
https://doi.org/10.5281/zenodo.3894711

12. Evers, B., Derakhshanfar, P., Devroey, X., Zaidman, A.: Unit test genera-
tion for common and uncommon behaviors: replication package (Jun 2020).
https://doi.org/10.5281/zenodo.3897513

13. Fraser, G., Arcuri, A.: EvoSuite: Automatic Test Suite Generation for
Object-Oriented Software. In: ESEC/FSE ’11. p. 416. ACM (2011).
https://doi.org/10.1145/2025113.2025179

14. Fraser, G., Arcuri, A.: EvoSuite: On the Challenges of Test Case Gen-
eration in the Real World. In: ICST’13. pp. 362–369. IEEE (mar 2013).
https://doi.org/10.1109/ICST.2013.51

15. Fraser, G., Arcuri, A.: A Large-Scale Evaluation of Automated Unit
Test Generation Using EvoSuite. TOSEM 24(2), 1–42 (dec 2014).
https://doi.org/10.1145/2685612

16. Fraser, G., Arcuri, A.: Achieving scalable mutation-based generation of whole
test suites. EMSE 20(3), 783–812 (jun 2015). https://doi.org/10.1007/s10664-013-
9299-z

17. Fraser, G., Zeller, A.: Exploiting Common Object Usage in Test Case Generation.
In: ICST’11. pp. 80–89. IEEE (mar 2011). https://doi.org/10.1109/ICST.2011.53

18. Galeotti, J.P., Fraser, G., Arcuri, A.: Improving search-based test suite generation
with dynamic symbolic execution. In: ISSRE’13. pp. 360–369. IEEE (nov 2013).
https://doi.org/10.1109/ISSRE.2013.6698889

19. Gouraud, S.D., Denise, A., Gaudel, M.C., Marre, B.: A new way of automat-
ing statistical testing methods. In: ASE ’01. pp. 5–12. IEEE (nov 2001).
https://doi.org/10.1109/ASE.2001.989785

20. Grano, G., Ciurumelea, A., Panichella, S., Palomba, F., Gall, H.C.:
Exploring the integration of user feedback in automated testing of
Android applications. In: SANER ’18. pp. 72–83. IEEE (mar 2018).
https://doi.org/10.1109/SANER.2018.8330198

21. Inkumsah, K., Xie, T.: Improving Structural Testing of Object-Oriented Programs
via Integrating Evolutionary Testing and Symbolic Execution. In: ASE’08. pp.
297–306. IEEE (sep 2008). https://doi.org/10.1109/ASE.2008.40

22. Kallepalli, C., Tian, J.: Measuring and modeling usage and reliabil-
ity for statistical Web testing. TSE 27(11), 1023–1036 (nov 2001).
https://doi.org/10.1109/32.965342

23. Kracht, J.S., Petrovic, J.Z., Walcott-Justice, K.R.: Empirically Evaluating the
Quality of Automatically Generated and Manually Written Test Suites. In:
QSIC’14. pp. 256–265. IEEE (oct 2014). https://doi.org/10.1109/QSIC.2014.33

Commonality-Driven Unit Test Generation 15

24. Lakhotia, K., Tillmann, N., Harman, M., de Halleux, J.: FloPSy - Search-Based
Floating Point Constraint Solving for Symbolic Execution. In: Petrenko, A., Simão,
A., Maldonado, J.C. (eds.) ICTSS’10. LNCS, vol. 6435, pp. 142–157. Springer
(2010). https://doi.org/10.1007/978-3-642-16573-3 11

25. Menzies, T., Zimmermann, T.: Software analytics: So what? IEEE Software 30(4),
31–37 (2013)

26. Molina, U.R., Kifetew, F., Panichella, A.: Java unit testing tool com-
petition - Sixth Round Urko. In: SBST ’18. pp. 22–29. ACM (2018).
https://doi.org/10.1145/3194718.3194728

27. Panichella, A., Kifetew, F.M., Tonella, P.: Reformulating Branch Coverage as a
Many-Objective Optimization Problem. In: ICST’15. pp. 1–10. IEEE (apr 2015).
https://doi.org/10.1109/ICST.2015.7102604

28. Panichella, A., Kifetew, F.M., Tonella, P.: A large scale empirical comparison of
state-of-the-art search-based test case generators. IST 104(June), 236–256 (2018).
https://doi.org/10.1016/j.infsof.2018.08.009

29. Panichella, A., Kifetew, F.M., Tonella, P.: Automated Test Case Generation as
a Many-Objective Optimisation Problem with Dynamic Selection of the Targets.
TSE 44(2), 122–158 (2018). https://doi.org/10.1109/TSE.2017.2663435

30. Panichella, S., Panichella, A., Beller, M., Zaidman, A., Gall, H.C.: The impact of
test case summaries on bug fixing performance: An empirical investigation. pp.
547–558. ACM (2016). https://doi.org/10.1145/2884781.2884847

31. Rojas, J.M., Fraser, G., Arcuri, A.: Seeding strategies in search-based unit test
generation. STVR 26(5), 366–401 (aug 2016). https://doi.org/10.1002/stvr.1601

32. Salahirad, A., Almulla, H., Gay, G.: Choosing the fitness function for the job:
Automated generation of test suites that detect real faults. STVR 29(4-5), e1701
(jun 2019). https://doi.org/10.1002/stvr.1701

33. Silva, S., Dignum, S., Vanneschi, L.: Operator equalisation for bloat free genetic
programming and a survey of bloat control methods. Genetic Programming and
Evolvable Machines 13(2), 197–238 (jun 2012). https://doi.org/10.1007/s10710-
011-9150-5

34. Sprenkle, S.E., Pollock, L.L., Simko, L.M.: Configuring effective navigation models
and abstract test cases for web applications by analysing user behaviour. STVR
23(6), 439–464 (2013). https://doi.org/10.1002/stvr.1496

35. Tonella, P., Ricca, F.: Statistical testing of Web applications. SMR 16(1-2), 103–
127 (jan 2004). https://doi.org/10.1002/smr.284

36. Vargha, A., Delaney, H.D.: A Critique and Improvement of the CL
Common Language Effect Size Statistics of McGraw and Wong. Jour-
nal of Educational and Behavioral Statistics 25(2), 101–132 (jun 2000).
https://doi.org/10.3102/10769986025002101

37. Wang, Q., Brun, Y., Orso, A.: Behavioral execution comparison: Are
tests representative of field behavior? In: ICST ’17. IEEE (mar 2017).
https://doi.org/10.1109/icst.2017.36

38. Wang, Q., Orso, A.: Mimicking user behavior to improve in-house test suites. In:
ICSE ’19. IEEE (may 2019). https://doi.org/10.1109/icse-companion.2019.00133

39. Winter, J., Aniche, M., Cito, J., van Deursen, A.: Monitoring-
aware IDEs. In: ESEC/FSE’19. pp. 420–431. ACM (2019).
https://doi.org/10.1145/3338906.3338926

