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Abstract—Search-based approaches have been used in the literature to automate the process of creating unit test cases. However,
related work has shown that generated tests with high code coverage could be ineffective, i.e., they may not detect all faults or kill all
injected mutants. In this paper, we propose CLING, an integration-level test case generation approach that exploits how a pair of
classes, the caller and the callee, interact with each other through method calls. In particular, CLING generates integration-level test
cases that maximize the Coupled Branches Criterion (CBC). Coupled branches are pairs of branches containing a branch of the caller
and a branch of the callee such that an integration test that exercises the former also exercises the latter. CBC is a novel
integration-level coverage criterion, measuring the degree to which a test suite exercises the interactions between a caller and its
callee classes. We implemented CLING and evaluated the approach on 140 pairs of classes from five different open-source Java
projects. Our results show that (1) CLING generates test suites with high CBC coverage, thanks to the definition of the test suite
generation as a many-objectives problem where each couple of branches is an independent objective; (2) such generated suites
trigger different class interactions and can kill on average 7.7% (with a maximum of 50%) of mutants that are not detected by tests
generated randomly or at the unit level; (3) CLING can detect integration faults coming from wrong assumptions about the usage of the
callee class (25 for our subject systems) that remain undetected when using automatically generated random and unit-level test suites.

Index Terms—CLING, Search-based software testing, Class integration testing, Coverage criteria, Test adequacy

✦

1 INTRODUCTION

S EARCH-BASED approaches have been applied to a vari-
ety of white-box testing activities [1], among which test

case and data generation [2]. In white-box testing, most of
the existing work has focused on the unit level, where the
goal is to generate tests that achieve high structural (e.g.,
branch) coverage. Prior work has shown that search-based
unit test generation can achieve high code coverage [3], [4],
[5], detect real-bugs [6], [7], and help developers during
debugging activities [8], [9].

Despite these undeniable results, researchers have iden-
tified various limitations of the generated unit tests [7], [10],
[11]. Prior studies have questioned the effectiveness of the
generated unit tests with high code coverage in terms of
their capability to detect real faults or to kill mutants when
using mutation coverage. For example, Gay et al. [10] have
highlighted how traditional code coverage could be a poor
indicator of test effectiveness (in terms of fault detection
rate and mutation score). Shamshiri et al. [7] have reported
that around 50% of faults remain undetected when relying
on generated tests with high coverage. Similar results have
also been observed for large industrial systems [3].

Gay et al. [10] have observed that traditional unit-level
adequacy criteria only measure whether certain code ele-
ments are reached, but not how each element is covered.
The quality of the test data and the paths from the covered
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element to the assertion play an essential role in better
test effectiveness. As such, they have advocated the need
for more reliable adequacy criteria for test case generation
tools. While these results hold for generated unit tests, other
studies on hand-written unit tests have further highlighted
the limitation of unit-level code coverage criteria [11], [12].

In this paper, we explore the usage of the integration
code between coupled classes as guidance for the test gen-
eration process. The idea is that, by exercising the behavior
of a class under test E (the calleE) through another class R
(the calleR) calling its methods, R will handle the creation of
complex parameter values and exercise valid usages of E. In
other words, the caller R contains integration code that (1)
enables the creation of better test data for the callee E, and
(2) allows to better validate the data returned by E.

Integration testing can be approached from many differ-
ent angles [13], [14]. Among others, dataflow analysis seeks
to identify possible interactions between the definition and
usage (def-use) of a variable. Various coverage criteria based
on intra- (for class unit testing) and inter-class (for class
integration testing) def-uses have been defined over the
years [15], [16], [17], [18], [19], [20], [21]. Dataflow analysis
faces several challenges, including the scalability of the
algorithms to identify def-use pairs [22] and the number
of test objectives that is much higher for dataflow criteria
compared to control flow ones like branch and branch pair
coverage [15], [20].

In our case, we focus on class integration testing be-
tween a caller and a callee [23]. Class integration testing
aims to assess whether two or more classes work together
properly by thoroughly testing their interactions [23]. Our
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idea is to complement unit test generation for a class under
test by looking at its integration with other classes using
control flow analysis. To that end, we define a novel
structural adequacy criterion called the Coupled Branches
Coverage criterion (CBC), targeting specific integration
points between two classes. Coupled branches are pairs of
branches ⟨r, e⟩, with r a branch of the caller, and e a branch
of the callee, such that an integration test that exercises
branch r also indirectly exercises branch e.

Furthermore, we implement a search-based approach
that generates integration-level test suites leveraging the
CBC criterion. We name our approach CLING (for class
integration testing). CLING uses a state-of-the-art many-
objective solver that generates test suites maximizing the
number of covered coupled branches. For the guidance,
CLING uses novel search heuristics defined for each pair
of coupled branches (the search objectives).

We conducted an empirical study on 140 well-
distributed (in terms of complexity and coupling) pairs of
caller and callee classes extracted from five open-source Java
projects. Our results show that CLING can achieve up to
99% CBC coverage, with an average of 49% across all pairs
of classes. We analyzed the benefits of the integration-level
test cases generated by CLING compared to unit-level tests
generated by EVOSUITE [24], the state-of-the-art generator
of unit-level tests, and random tests generated by RANDOOP
[25], a random-based test case generator. In particular, we
assess whether integration-level tests generated by CLING
can kill mutants and detect faults that would remain uncov-
ered when relying on other generated tests given the same
generation budget.

According to our results, on average, CLING kills 7.7%
(resp. 13%) of the mutants per class that remain undetected
by other tests generated using EVOSUITE (resp. RANDOOP)
for both the caller and the callee. The improvements in
mutation score are as high as 50% for certain pairs of classes.
Our analysis indicates that many of the most frequently
killed mutants are produced by integration-level mutation
operators. Finally, we have found 25 integration faults
(i.e., faults due to wrong assumptions about the usage of
the callee class) that were detected only by the integration
tests generated with CLING (and not through testing with
EVOSUITE or RANDOOP).

The remainder of the paper is organized as follows.
Section 2 summarizes the background and related work in
the area. Section 3 defines the Coupled Branches Criteria
and introduces CLING, our integration-level test case gen-
erator. Section 4 describes our empirical study, while Sec-
tion 5 reports the corresponding empirical results. Section 6
discusses the practical implication of our results. Section 7
discusses the threats to validity. Finally, Section 8 concludes
the paper.

2 BACKGROUND AND RELATED WORK

McMinn [2] defined search-based software testing (SBST) as
“using a meta-heuristic optimizing search technique, such as a
genetic algorithm, to automate or partially automate a testing
task”. Within this realm, test data generation at different
testing levels (such as unit testing, integration testing, etc.)
has been actively investigated [2]. This section provides an
overview of earlier work in this area.

Listing 1
Class Person

1 class Person{
2 private Car car = new Car();
3 protected boolean lazy = false;
4 public void driveToHome(){
5 if (car.fuelAmount < 100) {
6 addEnergy();
7 } else {
8 car.drive();
9 }

10 }
11
12 protected void addEnergy(){
13 if (this.lazy) {
14 takeBus();
15 } else {
16 car.refuel();
17 }
18 }
19 }

2.1 Search-based approaches for unit testing

SBST algorithms have been extensively used for unit test
generation. Previous studies confirmed that such generated
tests achieve a high code coverage [5], [26], real-bug detec-
tion [3], and a debugging cost reduction [9], [27], comple-
menting manually-written tests.

From McMinn’s [2] survey about search-based test data
generation, we observe that most of the current approaches
rely on the control flow graph (CFG) to abstract the source
code and represent possible execution flows. The CFGm =
(Nm, Em) represents a method (or function in procedural
programming languages) m as a directed graph of basic
blocks of code (the nodes Nm), while Em is the set of
the control flow edges. An edge connects a basic block n1

to another one n2 if the control may flow from the last
statement of n1 to the first statement of n2.

Listing 1 presents the source code of Person, a class
representing a person and her transportation habits. A
Person can drive home (lines 4-10), or add energy to her car
(lines 12-18). Figure 1 presents the CFG of two of Person’s
methods, with the labels of the nodes representing the line
numbers in the code. Since method driveToHome calls
method addEnergy, node 6 is transformed to two nodes,
which are connected to the entry and exit point of the
called method. This transformation is explained in the last
paragraph of this section.

Many approaches based on CFGs combine two common
heuristics to reach a high branch and statement coverage in
unit-level testing: the branch distance and the approach level.
The branch distance measures (based on a set of rules) the
distance to satisfying (true branch) and the distance to not
satisfying (false branch) a particular branching node in the
program. For instance, the distance to true for the condition
at line 5 in Listing 1 is 100 − car .fuelAmount + 1, and the
distance to false is car .fuelAmount − 100. The approach level
measures the distance between the execution path and a
target node in a CFG. For that, it relies on the concepts
of post-dominance and control dependency [28]. As an
example, in Figure 1, node 8 is control dependent on node
5 and node 8 post-dominates edge ⟨5, 8⟩. The approach level
is the minimum number of control dependencies between a
target node and an executed path by a test case.

In this study, we analyze how a class is used/invoked by
the other classes within the same system. For this purpose,
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Fig. 1. Class-level CFG for class Person

we merge the Class-level Control Flow Graph (CCFG) of
target callee and caller classes.

2.2 Search-based approaches for integration testing

Integration testing aims at finding faults that are related to
the interaction between components. We discuss existing
integration testing criteria and explain the search-based
approaches that use these criteria to define fitness functions
for automating integration-level testing tasks.

2.2.1 Integration testing criteria
Jin et al. [13] categorize the connections between two pro-
cedures into four types: call couplings (type 1) occur when
one procedure calls another procedure; parameter couplings
(type 2) happen when a procedure passes a parameter
to another procedure; shared data couplings (type 3) occur
when two procedures refer to the same data objects; external
device coupling (type 4) happens when two procedures access
the same storage device. They introduce integration testing
criteria according to the data flow graph (containing the
definitions and usages of variables at the integration points)
of procedure-based software. Their criteria, called coupling-
based testing criteria, require that the tests’ execution paths
cover the last definition of a parameter’s value in the CFG
of a procedure (the caller procedure), a node (the call site)
calling another procedure with that parameter, and the first
use of the parameter in the callee (and in the caller after the
call if the parameter is a call-by-reference).

Harrold et al. [16] introduced data flow testing for a
single class focusing on method-integration testing. They
define three levels of testing: intra-method testing, which
tests an individual method (i.e., the smallest possible unit
to test); inter-method testing, in which a public method is
tested that (in)directly calls other methods of the same class,
and intra-class testing, in which the various sequences of
public methods in a class are tested. For data flow testing
of inter-method and intra-class testing, they defined a Class-
level Control Flow Graph (CCFG). The CCFG of class C
is a directed graph CCFGC = (NCm, ECm) which is a
composition of the control flow graphs of methods in C ;
the CFGs are connected through their call sites to methods
in the same class [16]. This graph demonstrates all paths that

might be crossed within the class by calling its methods or
constructors.

Let us consider again the class Person in Listing 1. The
CCFG of class Person is created by merging the CFGs of
its method, as demonstrated in Figure 3. For example, in
the CFG of the method Person.driveToHome(), the node
6c is a call site to Person.addEnergy(). In the approach
introduced by Harrold et al. [16], they detect the def-use
paths in the constructed CCFGs and try to cover those paths.

Denaro et al. [22] revisited previous work on data flow
analysis for object-oriented programs [16], [17] to define
an efficient approach to compute contextual def-use coverage
[17] for class integration testing. The approach relies on con-
textual data flow analysis to take state-dependent behavior of
classes that aggregate other classes into account. Compared
to def-use paths, contextual def-use include the chain of
method calls leading to the definition or the use.

A special case is represented by the polymorphic inter-
actions that need to be tested. Alexander et al. [18], [19] used
the data flow graph to define testing criteria for integrations
between classes in the same hierarchy tree.

All of the mentioned approaches are using data-flow
analysis to define integration testing criteria. However, gen-
erating data-flow graphs covering the def-uses involved in
between classes is expensive and not scalable in complex
cases [15]. Vivanti et al. [20] shows that the average number
of def-use paths in a single class in isolation is three times
more than the number of branches. By adding def-use
paths between the non-trivial classes, this number grows
exponentially.

In search-based approaches, the number of search objec-
tives matters, as too many objectives lead to search process
misguidance. Compared to previous work, our approach
does not try to cover def-use paths. Instead, we use a
control flow analysis to identify from a CCFG a restricted
number of pairs of branches (in a caller and a callee) that are
not trivially executed together. For instance, the couple of
branches ⟨13, 16⟩ and ⟨b8, b9⟩ in Figure 3 are used to define
the search objectives of our test case generator. Section 3
details the analysis of the CCFG to identify such pairs of
branches, including for special cases of interaction (namely
inheritance and polymorphism), and the definition of the
objectives and search algorithm.

CCFGs have previously been used in other approaches.
For instance, Wang et al. [29] merge the CFGs of methods
of classes in the dependencies of the software under test to
identify dependency conflicts.

2.2.2 Search-based approaches
Search-based approaches are widely used for test ordering
[30], [31], [32], [33], [33], [34], [35], [36], [37], [38], [39], [40],
[41], typically with the aim of executing those tests with
the highest likelihood of failing earlier on. However, search-
based approaches have rarely been used for generating class
integration tests. Ali Khan et al. [42] have proposed a high-
level evolutionary approach that detects the coupling paths
in the data-flow graphs of classes and have used it to
define the fitness function for the genetic algorithm. They
also proposed another approach for the same goal relying
on Particle Swarm Optimization [43]. Since objectives are
defined according to the def-use paths between classes, the
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number of search objectives can grow exponentially, thus
severely limiting the scalability of the approach (as we
explained in Section 2.2.1).

Most related to our approach is the work on dynamic data
flow testing (DYNAFLOW) from Denaro et al. [21]. Dynamic
data flow testing is a two steps test amplification pipeline [44]
where: (i) a set of existing test cases are executed to collect
execution traces, compute new data flow information, and
subsequently derive new test objectives; and (ii) the new test
objectives are fed to a test case generation tool. The pipeline
is repeated until no new test objectives are found.

In this study, we propose a novel approach for class
integration test generation. Instead of using the data flow
graph, which is more expensive to construct than a class
call graph, or incrementally amplify the existing test suite,
requiring several executions of a test case generation tool,
we use the information available in the class call graph of
the classes to calculate the fitness of the generated tests. We
do note that we could not find any available implementation
of data flow-based approaches.

2.3 Evolutionary approaches for other testing levels

Arcuri [45] proposed EvoMaster, an evolutionary-based
white-box approach for system-level test generation for
RESTful APIs. A test for a RESTful web service is a sequence
of HTTP requests. EvoMaster tries to cover three types of
targets: (i) the statements in the System Under Test (SUT);
(ii) the branches in the SUT; and (iii) different returned
HTTP status codes. Although EvoMaster tests different
classes in the SUT, it does not systematically target different
integration scenarios between classes.

In contrast to EvoMaster, other approaches perform
fuzzing [46], “an automated technique providing random data as
input to a software system in the hope to expose a vulnerability.”
Fuzzing uses information like grammar specifications [46],
[47], [48], [49] or feedback from the program during the
execution of tests [50] to steer the test generation process.
These approaches are black-box and do not rely on any
knowledge about classes in the SUT. Hence, their search
processes are not guided by the integration of classes.

Our approach performs white-box testing. It monitors
the interaction between the target classes and strives to
cover different integration scenarios between them.

3 CLASS INTEGRATION TESTING

The main idea of our class integration testing (hereinafter
referred to as CLING) is to test the integration of two
classes by leveraging the usage of one class by another class.
More specifically, we focus on the calls between the former,
the callee (E), and the latter, the caller (R). By doing so,
we benefit from the additional context setup by R before
calling E (e.g., initializing a complex input parameter), and
the additional post-processing after E returns (e.g., using
the return value later on in R), thus (implicitly) making
assumptions on the behavior of E.

Figure 2 presents the general overview of CLING. CLING
takes as input a pair of caller-callee ⟨R,E⟩ classes with
at least one call (denoted call site hereafter) from R to E.
Since the goal of CLING is to generate test cases covering
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Fig. 2. General overview of CLING
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Fig. 3. Merging CCFGs of two classes: Person (caller) and Car (callee)

E by calling methods in R, the first step ( 1⃝) statically
collects the list of covering methods in R that, when called,
may directly or indirectly cover statements in E. This list
is later used during the generation process to ensure that
test cases contain calls to covering methods. The second step
( 2⃝) statically analyzes the CCFGs of R and E to identify the
coupled branches between R and E used later on to guide
the search. The CCFGs are statically built from the CFGs of
the methods (including inherited ones) in R and E. Finally,
the generation of the test cases ( 3⃝) uses a genetic algorithm
with two additional repair steps, ensuring that the crossover
and mutation only produce test cases able to cover lines in
E. The result is a test suite for E, whose test cases invoke
methods in R that cover the interactions between R and E.

The remainder of this section describes our novel un-
derlying Coupled Branches Criterion, the corresponding
search-heuristics, and test case generation in CLING.

3.1 Coupled Branch testing criterion

To test the integration between two classes E and R, we
need to define a coverage criterion that helps us to measure
how thoroughly a test suite T exercises the interaction calls
between the two classes (E and R). One possible coverage
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criterion would consist of testing all possible paths (inter-
class path coverage) that start from the entry node of the caller
R, execute the integration calls to E and terminate in one of
the exit points of R. However, such a criterion will be af-
fected by the path explosion problem [51]: the number of paths
increases exponentially with the cyclomatic complexity of E
and R, and thus the number of interaction calls between the
two classes.

To avoid the path explosion problem, we define an integra-
tion-level coverage criterion, namely the Coupled Branch
Criterion (CBC), where the number of coverage targets
remains polynomial to the cyclomatic complexity of E and
R. More precisely, CBC focuses on call coupling between
caller and callee classes. Intuitively, let s ∈ R be a call site,
i.e., a call statement to a method of the class E. Our criterion
requires to cover all pairs of branches (br, be), where br is
a branch in R that leads to s (the method call), and be is a
branch of the callee E that is not trivially covered by every
execution of E. So, in the worst case, the number of coverage
targets is quadratic in number of branches in the caller and
callee classes.

3.1.1 Target caller branches
Among all branches in the caller class, we are interested
in covering the branches that are not trivially (always)
executed, and that always lead to the integration call site
(i.e., calling the callee class) when covered. We refer to these
branches as target branches for the caller.

Definition 3.1 (Target branches for the caller). For a call
site s in R, the set of target branches BR(s) for the caller R
contains the branches having the following characteristics:
(i) the branches are outgoing edges for the node on which s
is control dependent (i.e., nodes for which s post-dominates
one of its outgoing branches but does not post-dominate the
node itself); and (ii) the branches are post-dominated by s,
i.e., branches for which all the paths through the branch to
the exit point pass through s.

To understand how we determine the target branches
in the caller, let us consider the example of the caller
and the callee in Figure 3. The code for the class Per-
son is reported in Listing 1. The class Person con-
tains two methods, addEnergy() and driveToHome(),
with the latter invoking the former (line 6 in Listing 1).
The method Person.addEnergy() invokes the method
refuel() of the class Car (line 16 in Listing 1). The
method Person.driveToHome() invokes the method
Car.drive() (line 8 in Listing 1). Therefore, the class
Person is the caller, while Car is the callee.

Figure 3 shows an excerpt of the Class-level Control
Flow Graphs (CCFGs) for the two classes. In the fig-
ure, the names of the nodes are labelled with the line
number of the corresponding statements in the code of
Listing 1. Node 16 in Person.addEnergy() is a call
site to Car.refuel(); it is also control dependent on
nodes 5 (Person.driveToHome()) and 13 (Person.add-
Energy()). Furthermore, node 16 only post-dominates
branch ⟨13, 16⟩. Instead, the branch ⟨5, 6c⟩ is not post-
dominated by node 16 as covering ⟨5, 6c⟩ does not always
imply covering node 16 as well. Therefore, the branches
in the caller Person.addEnergy() that always lead to

the callee are BPerson(Car.refuel()) = {⟨13, 16⟩}. Hence,
among all branches in the caller class (Person in our
example), we are interested in covering the branches that,
when executed, always lead to the integration call site (i.e.,
calling the callee class). We refer to these branches as target
branches for the caller.

3.1.2 Target callee branches

Like the target branches of the caller, the target branches
of the callee are branches that are not trivially (always)
executed each time the method is called.

Definition 3.2 (Target branches for the callee). The set of
target branches BE(s) for the callee E contains branches
satisfying the following properties: (i) the branches are
among the outgoing branches of branching nodes (i.e., the
nodes having more than one outgoing edge); and (ii) the
branches are accessible from the entry node of the method
called in s.

Let us consider the example of Figure 3 again. This
time, let us look at the branches in the callee (Car) that
are directly related to the integration call. In the example,
executing the method call Car.refuel() (node 16 of the
method Person.addEnergy()) leads to the execution of
the branching node b8 of the class Car. Hence, the set of
branches affected by the interaction calls is BCar(Car.refu-
el()) = {⟨b8, b9⟩; ⟨b8, b10⟩}. In the following, we refer to
these branches as target branches for the callee. Note that,
for a call site s in R calling E, the set of target branches for
the callee also includes branches that are trivially executed
by any execution of s.

3.1.3 Coupled branches

Given the sets of target branches for both the caller and
callee, an integration test case should exercise at least one
target branch for the caller (branch affecting the integra-
tion call) and one target branch for the callee (i.e., the
integration call should lead to covering branches in the
callee). In the following, we define pairs of target branches
(br ∈ BR(s), be ∈ BE(s)) as coupled branches because
covering br can lead to covering be as well.

Definition 3.3 (Coupled branches). Let BR(s) be the set of
target branches in the caller class R; let BE(s) be the set of
target branches in the callee class E; and let s be the call
site in R to the methods of E. The set of coupled branches
CBR,E(s) is the cartesian product of BR(s) and BE(s):

CBR,E(s) = CBR,E(s) = BR(s)×BE(s) (1)

In our example of Figure 3, we have two coupled
branches: the branches (⟨13, 16⟩, ⟨b8, b9⟩) and the branches
(⟨13, 16⟩, ⟨b8, b10⟩).

Definition 3.4 (Set of coupled branches). Let S =
(s1, . . . , sk) be the list of call sites from a caller R to a callee
E, the set of coupled branches for R and E is the union of
the coupled branches for the different call sites S:

CBR,E = ∪s∈SCBR,E(s)
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Listing 2
Class GreenPerson

1 class GreenPerson extends Person{
2 private HybridCar car = new HybridCar();
3 @override
4 public void addEnergy(){
5 if(this.lazy){
6 takeBus();
7 }else if (chargerAvailable()){
8 car.recharge()
9 }else{

10 car.refuel();
11 }
12 }
13
14 private void chargerAvailable(){
15 if(ChargingStation.takeavailableStations().size >

0){
16 return true;
17 }
18 return false;
19 }
20 }

3.1.4 The Coupled Branches Coverage criterion (CBC)
Based on the definition above, the CBC criterion requires
that for all the call sites S from a caller R to a callee E, a
given test suite T covers all the coupled branches:

CBCR,E =
|{(ri, ei) ∈ CBR,E |∃t ∈ T : t covers ri and ei}|

|CBR,E |

We do note that this formula is only relevant if there are
indeed call interactions between caller and callee. As for
classical branch and branch-pair coverage, CBR,E may con-
tain incompatible branch-pairs (e.g., when the conditions are
mutually exclusive). However, detecting and filtering such
pairs is an undecidable problem. Hence, in this study, we
target all coupled branches.

3.1.5 Inheritance and polymorphism
In the special case where the caller and callee classes are

in the same inheritance tree, we use a different procedure to
build the CCFG of the super-class and find the call sites S.
The CCFG of the super-class is built by merging the CFGs
of the methods that are not overridden by the sub-class. As
previously, the CCFG of the sub-class is built by merging
the CFGs of the methods defined in this class, including the
inherited methods overridden by the sub-class (other non-
overridden inherited methods are not part of the CCFG of
the sub-class).

For instance, the class GreenPerson in Listing 2, rep-
resenting owners of hybrid cars, extends class Person
from Listing 1. For adding energy, a green person can
either refuel or recharge her car (lines 7 to 11). Green-
Person overrides the method Person.addEnergy() and
defines an additional method GreenPerson.charger-
Available() indicating whether the charging station
is available. Only those two methods are used in the
CCFG of the class GreenPerson presented in Figure 4,
inherited methods are not included in the CCFG; the
CCFG of the super-class Person does not contain the
method Person.addEnergy(), redefined by the sub-class
GreenPerson.

The call sites S are identified according to the CCFGs,
depending on the caller and the callee. If the caller R is the
super-class, S will contain all the calls in R to methods that

Fig. 4. CCFG of GreenPerson as subclass

have been redefined by the sub-class. For instance, nodes 6
and 13 in Figure 3 with Person as caller. If the caller R is the
sub-class, S will contain all the calls in R to methods that
have been inherited but not redefined by R. For instance,
node 7c in Figure 4 with GreenPerson as caller.

3.2 CLING

CLING is the tool that we have developed to generate
integration-level test suites that maximize the proposed
CBC adequacy criterion. The inputs of CLING are the (1)
application’s bytecode, (2) a caller class R, and (3) a callee
class E. As presented in Figure 2, CLING first detects the cov-
ering methods (step 1⃝) and identifies the coupled branches
CBR,E(s) for the different call sites (step 2⃝), before starting
the search-based test case generation process (detailed in
the following subsections). CLING produces a test suite that
maximizes the CBC criterion for R and E.

Satisfying the CBC criterion is essentially a many-
objective problem where integration-level test cases have to
cover pairs of coupled branches separately. In other words,
each pair of coupled branches corresponds to a search ob-
jective to optimize. The next subsection describes our search
objectives.

3.2.1 Search objectives
In our approach, each objective function measures the
distance of a generated test from covering one of the
coupled branch pairs. The value ranges between [0,+∞)
(zero denoting that the objective is satisfied). Assume that
CBR,E = {c1, c2, . . . , cn} is the set of coupled branches
⟨ri, ei⟩ between R and E. Then, the fitness for a test case
t is defined by the following distinct objectives:

Objectives =


d(c1, t) = D(r1, t) ⊕ D(e1, t)

. . .
d(cn, t) = D(rn, t)⊕D(en, t)

(2)

where D(b, t) = al(b, t) + bd(b, t) computes the distance
between the test t to the branch b using the classical ap-
proach level al(b, t) (i.e., the minimum number of control



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, OCTOBER 2022 7

dependencies between b and the execution path of t) and
normalized branch distance bd(b, t) (i.e., the distance, com-
puted based on a set of rules, to the branch leading to b
in the closest node on the execution path of t) [2]; and
D(ri, t) ⊕ D(ei, t) is defined as D(ri, t) + 1 if D(ri, t) > 0
(i.e., the caller branch is not covered) and D(ei, t) otherwise
(i.e., the caller branch is covered).

For example, assume that we want to measure the fit-
ness of a test case t′, generated during the search process
while targeting coupled branches from the classes Person
(caller class) and Car (callee class). This test case covers
the following path in the CCFG depicted by Figure 3:
Entry → 13 → 16 → b8 → b10 → Exit. As explained
in Section 3.1.3, this pair of classes contains two coupled
branches: (⟨13, 16⟩, ⟨b8, b10⟩) and (⟨13, 16⟩, ⟨b8, b9⟩), each
corresponding to a search objective. Since t′ covers both of
the branches in the first couple, the objective corresponding
to that couple is fulfilled and its fitness value is 0. In
contrast, t′ only covers the first branch of the second couple
(i.e., ⟨b8, b9⟩ is not covered). In this case, D(r, t′) equals
zero, but D(e, t′) is calculated using the approach level and
branch distance heuristics. Since t′ covers all of the control
dependent branches the approach level, al(b, t′), equals
zero. The branch distance, bd(b, t′) ∈ [0, 1], is calculated
according to the concrete values used in the branching
condition in the last covered control dependent node (here,
b8) where the execution path of t′ changed away from
reaching to the second target branch ⟨b8, b9⟩.

3.2.2 Search algorithm
To solve such a many-objective problem, we tailored the
Many-Objective Sorting Algorithm (MOSA) [52] to gener-
ate test cases through class integration. MOSA has been
introduced and assessed in the context of unit test gener-
ation [52] and security testing [53]. Additionally, previous
studies [26], [52] have shown that MOSA is very competi-
tive compared with alternative algorithms when handling
hundreds and thousands of testing objectives. Interested
readers can find more details about the original MOSA
algorithm in Panichella et al. [52]. Although a more efficient
variant of MOSA has recently been proposed [54], such
a variant (DynaMOSA) requires to have a hierarchy of
dependencies between coverage targets that exists only at
the unit level. Since targets in unit testing are all available
in the same control flow graph, the dependencies between
objectives can be calculated (i.e., the control dependencies).
In contrast, CLING’s objective is covering combinations of
targets in different control flow graphs. Since covering one
combination does not depend on the coverage of another
combination, DynaMOSA is not applicable to this problem.

Therefore, in CLING, we tailored MOSA to work at the
integration level, targeting pairs of coupled branches rather
than unit-level coverage targets (e.g., statements). In the
following, we describe the main modifications we applied
to MOSA to generate integration-level test cases.

3.2.3 Initial population
The search process starts by generating an initial population
of test cases. A random test case is a sequence of statements
(object instantiations, primitive statements, method calls, and
constructor calls to the class under test) of variable lengths.

More precisely, the random test cases include method calls
and constructors for the caller R, which directly or indirectly
invoke methods of the callee E (covering methods). Although
CLING generates these test cases randomly, it extends the
initialization procedure used for search-based crash repro-
duction [27]. In particular, the initialization procedure in
CLING gives a higher priority to methods in the caller class
R that invoke methods of the callee class E. While calls
to other methods of R are also inserted, their insertion has
a lower probability. This prioritization ensures to generate
tests covering call sites to the callee class. In the original
MOSA algorithm, all methods of the class under test are
inserted in each random test case with the same probability
without any prioritization. The execution time of the initial-
isation procedure is part of the search budget.

3.2.4 Mutation and crossover

CLING uses the traditional single-point crossover and mu-
tation operators [24] (adding, changing and removing state-
ments) with an additional procedure to repair broken chro-
mosomes. The initial test cases are guaranteed to contain
at least one covering method (a method of R that directly or
indirectly invokes methods of E). However, mutation and
crossover can lead to generating offspring tests that do not
include any covering method. We refer to these chromosomes
as broken chromosomes. To fix the broken chromosomes, the
repair procedure works in two different ways, depending on
whether the broken chromosome is created by the crossover
or by the mutation.

If the broken chromosome is the result of the mutation
operator, then the repair procedure works as follows: let t
be the broken chromosome and let M be the list of covering
methods; then, CLING applies the mutation operator to t in
an attempt to insert one of the covering methods in M . If
the insertion is not successful, then the mutation operator
is invoked again within a loop. The loop terminates when
either a covering method is successfully injected in t or
when the number of unsuccessful attempts is greater than a
threshold (50 by default). In the latter case, t is not inserted
in the new population for the next generation.

If the broken chromosome is generated by the crossover
operator, then the broken child is replaced by one of its
parents.

3.2.5 Polymorphism

If the caller and callee are in the same hierarchy and the
caller is the super-class, CLING cannot generate tests for
the caller class that will cover the callee class (since the
methods to cover are not defined in the super-class). This is
the case for instance if the super-class (caller) calls abstract
methods defined in the sub-class (callee). In this particular
case, CLING generates tests for the callee class. However,
it selects the covering methods only from the inherited
methods which are not overridden by the callee (sub-class).
A covering method should be able to cover calls to the
methods that have been redefined by the sub-class. With
this slight change, CLING can improve the CBC coverage, as
described in Section 3.1.5.
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3.3 Implementation
We implemented CLING as an open-source tool written in
Java.1 The tool relies on the EVOSUITE [24] library as an ex-
ternal dependency. It implements the code instrumentation
for pairs of classes, builds the CCFGs at the byte-code level,
and derives the coverage targets (pairs of branches) accord-
ing to the CBC criterion introduced in Section 3.1.4. The tool
also implements the search heuristics, which are applied
to compute the objective scores as described in Section 3.
Besides, it implements the repair procedure described in
Section 3.2.4, which extends the interface of the genetic op-
erators in EVOSUITE. Moreover, we customized the many-
objective MOSA algorithm [54], which is implemented in
EVOSUITE, for our test case generation problem in CLING.

4 EMPIRICAL EVALUATION

Our evaluation aims to answer three research questions. The
first research question analyzes the levels of CBC coverage
achieved by CLING. For this research question, we first
analyze the coupled branches covered by CLING in each of
the cases:
RQ1.1 What is the CBC coverage achieved by CLING?
As explained in Section 2.2.2, to the best of our knowledge,
there is no class-integration test case generator available for
comparison. We thus compare CLING to the state-of-the-art
unit test generators in terms of CBC coverage:
RQ1.2 How does the CBC coverage achieved by CLING compare

to automatically generated unit-level and random tests?
Since the test cases generated by CLING aim to cover cou-
pled branches between two classes, we need to determine
the effectiveness of this kind of coverage compared to test
suites generated for high branch coverage in unit testing:
RQ2.1 What is the effectiveness of the integration-level tests

compared to unit-level and random tests?
Additionally, as the integration code of the caller can help to
create better test data for the callee and validate its returned
data, we investigate the complementarity between CLING
and unit testing w.r.t. fault detection in the callee:
RQ2.2 How complementary are the integration-level tests to the

unit-level and random tests w.r.t. fault detection?
Finally, we want to see whether the tests generated by
CLING can make any difference in practice. Hence, we
analyzed the integration faults captured by these tests:
RQ3 What integration faults does CLING detect?

4.1 Baseline Selection
The goal of this evaluation is to explore the impact and
complementarity of the tests generated by CLING on the
results of the search-based unit testing in various aspects.
To achieve this purpose, we run our tool against EVOSUITE,
which is currently the best tool in terms of achieving branch
coverage [55], [56], [57], [58], [59]. Additionally, we com-
pare CLING against randomly generated tests using RAN-
DOOP [25], a feedback-directed random test case generator.
In contrast to EVOSUITE, RANDOOP can randomly generate
tests for multiple classes.

1. Available at https://github.com/STAMP-project/botsing/tree/
master/cling

4.2 Subjects Selection
The subjects of our studies are five Java projects listed in Ta-
ble 1, namely Closure compiler, Apache commons-lang, Apache
commons-math, Mockito, and Joda-Time. Our primary reason
to use these projects is that they have been used in prior
studies to assess the coverage and the effectiveness of unit-
level test case generation [7], [54], [60], [61], program repair
[62], [63], fault localization [64], [65], and regression testing
[66]. A consequence of this selection is that the source code
under analysis is relatively old, making it hard to interact
with developers to get confirmation about potential faults.
Thus, the route that we take instead is to use future commits
(after the commits under analysis) to explore whether the
bugs we identify were addressed (possibly after failures in
production), as explained in the next section.

To sample the classes under test, we first extract pairs
of caller and callee classes (i.e., pairs with interaction
calls) in each project. Then, we remove pairs that con-
tain trivial classes, i.e., classes where the caller and callee
methods have no decision point (i.e., with cyclomatic com-
plexity equal to one). This is because methods with no
decision points can be covered with single method calls at
the unit testing level. Note that similar filtering based on
code complexity has been used and recommended in the
related literature [4], [54], [57]. From the remaining pairs, we
sampled 140 distinct pairs of classes from the five projects
in total, which offers a good balance between generalization
(i.e., the number of pairs to consider) and statistical power
(i.e., the number of executions of each tool against each
class or pair of classes). We performed the sampling to have
classes with a broad range of complexity and coupling. In
our sampling procedure, each selected class pair includes
either the classes with the highest cyclomatic complexity or
the mosts coupled classes. The numbers of pairs selected
from each project are reported in Table 1 (column #), as
well as the average cyclomatic complexity (cc) of the caller
and the callee, the average number (count) of calls from
the caller to the callee, and the minimum (min), average
(count), and maximum (max) number of coupled branches.
Each pair of caller and callee classes represents a target for
CLING.

As reported in Table 1, CLING did not identify any
coupled-branches for three pairs of classes (one in mockito
and two in time). This is due to the absence of target
branches in either the caller or the callee, resulting in no
couple of branches to cover. Those three pairs have been
excluded from the results.

Our replication package [67] contains the list of class
pairs sampled for our study, their detailed statistics (i.e., cy-
clomatic complexity and the number of interaction calls),
and the project versions.

4.3 Configurations
To answer the research questions, we run CLING on each
of the selected class pairs. For each class pair targeted
with CLING, we run EVOSUITE with the caller and the
callee classes as target classes under test (i.e., each class
is targeted independently) to compare the class integra-
tion test suite with unit level test suites for the individ-
ual classes. We configure EVOSUITE to use DynaMOSA

https://github.com/STAMP-project/botsing/tree/master/cling
https://github.com/STAMP-project/botsing/tree/master/cling
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TABLE 1
Projects in our empirical study. # indicates the number of caller-callee pairs. CC indicates the cyclomatic complexity of the caller and callee
classes. Calls indicates the number of calls from the caller to the callee. Coupled branches indicates the number of coupled branches.

Project # Caller Callee Calls Coupled branches
cc σ cc σ count σ min count σ max

closure 26 1,221.3 1,723.0 377.2 472.5 70.3 101.0 4 10,542 17,080 60,754
mockito 20 115.3 114.4 127.8 113.2 39.5 64.9 0 1,185 1,974 6,929
time 51 68.7 84.0 87.2 92.3 23.9 50.5 0 494 1,093 5,457
lang 18 145.0 177.8 235.3 242.7 12.4 14.6 2 409 598 1,826
math 25 79.2 88.4 57.5 64.4 18.8 34.5 2 294 613 2,682

All 140 301.1 859.5 160.6 257.7 32.4 62.8 0 2,412 8,294 60,754

(-Dalgorithm=DynaMOSA), which has the best outcome in
structural and mutation coverage [54] and branch coverage
(-Dcriterion=BRANCH).

RANDOOP does not include any dynamic dependency
analysis and requires the user to manually specify the list
of classes whose methods, constructors, and fields may
appear in a test. Following the guidelines provided in the
RANDOOP manual2, we use the Java dependencies analysis
utility (jdeps) to identify direct and indirect dependencies
of the caller and callee classes. As the first step, we recur-
sively collected all of the dependencies for caller and callee
classes (as suggested by the RANDOOP manual). However,
after running the first round of the experiment with all of
the dependencies, we noticed that using all the indirect
dependencies resulted in a large number of RANDOOP exe-
cutions not terminating due to infinite test case executions
(RANDOOP did not terminate in 128/140 of cases used in
this experiment). As mentioned in the RANDOOP manual,
this scenario occurs when one of the tests generated by
RANDOOP traps in an infinite loop and drives the whole
test generation process to get stuck in an infinite loop.
Hence, we followed another suggestion mentioned in the
RANDOOP manual and limited the depth to 2: i.e., for each
caller and callee, we provided a list of classes to use in
the generated tests containing the caller and the callee,
their direct dependencies, and the direct dependencies of
those dependencies. Additionally, we specify (using option
--require-covered-classes=) to keep only test cases
in which the caller or callee class are directly or indi-
rectly used. As mentioned by the manual, this option only
works if RANDOOP is executed using the covered-class
javaagent to instrument the classes. So, we also used this
javaagent for RANDOOP executions in our experiment.

This results in having the following configurations, each
one corresponding to a test suite generated by one indepen-
dent execution of CLING, RANDOOP or EVOSUITE:

1) TCLING , the integration-level test suite generated by
CLING (-target_classes <Caller>, <Callee>);

2) TRan, the random test suite generated by RANDOOP
for the caller and callee (--classlist=<Caller>,
<Callee>, <level 1 dependencies>, <level
2 dependencies>);

3) TEvoR, the unit-level test suite generated by EVOSUITE
for the caller (-class <Caller>);

4) TEvoE , the unit-level test suite generated by EVOSUITE
for the callee (-class <Callee>).

2. https://randoop.github.io/randoop/manual/

All other parameters were left to their default values.

4.4 Evaluation Procedure
To address the random nature of the three tools, we repeat
each run 20 times (140 pairs of classes × 4 executions × 20
repetitions = 11,200 executions). Moreover, each CLING run
is configured with a search budget of five minutes, including
two minutes of search initialization timeout. To allow a fair
comparison, we run EVOSUITE for five minutes on each
caller and callee class, and RANDOOP for ten minutes as
it generates tests for both the caller and the callee, including
default initialization timeout. This represents a total of ∼48.6
days execution time for test case generation.

For RQ1, we analyze the CBC coverage achieved by
TCling . As the CBC coverage of TEvoE is equal to 0.0 by
construction, we compare TCling with TRan and TEvoR

across the 20 independent runs.
For RQ2, we measure the effectiveness of the generated

test suite using both line coverage and mutation analysis on
the callee classes E (considered as the class under test in
our approach). Mutation analysis is a high-end coverage
criterion, and mutants are often used as substitutes for
real faults since previous studies highlighted its significant
correlation with fault-detection capability [68], [69]. Besides,
mutation analysis provides a better measure of the test effec-
tiveness compared to more traditional coverage criteria [12]
(e.g., branch coverage).

We compute the line coverage and mutation scores
achieved by TCLING for the callee class in each target class
pair. Then, we compare them to the line coverage and
mutation scores achieved by TRan, and the unit-level test
suites TEvoR and TEvoE) for the callee class. Moreover, we
analyse the orthogonality of the sets of mutants in the callee
that are strongly killed by TCLING , and those killed by the
random and unit-level tests individually. In other words, we
look at whether TCLING allows killing mutants that are not
killed at unit-level or by random tests (strong mutation).
Also, we analyze the type of the mutants which are only
killed by TCLING .

For line coverage and mutation analysis, we use PIT [70],
which is a state-of-the-art mutation testing tool for Java
code, to mutate the callee classes. PIT also collects and
reports the line coverage of the test suite on the original class
before mutation. PIT has been used in literature to assess
the effectiveness of test case generation tools [56], [57], [58],
[59], [60], [71], and it has also been applied in industry3. In

3. http://pitest.org/sky experience/

https://randoop.github.io/randoop/manual/
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Fig. 5. Distribution of CLING’s CBC coverage for the different class pairs.

our study, we use PIT v.1.4.9 with all mutation operators
activated (i.e., the ALL mutators group).

For RQ3, we analyze the exceptions triggered by both
integration, random, and unit-level test suites. In particular,
we extract unexpected exceptions causing crashes, i.e., ex-
ceptions that are triggered by the test suites but that are (i)
not declared in the signature of the caller and callee methods
using throws clauses, (ii) not caught by a try-catch
blocks, and (iii) not documented in the Javadoc of the
caller or callee classes. Then, we manually analyze un-
expected exceptions that are triggered by the integration-
level test cases (i.e., by CLING), but not by the random
and unit-level tests. Since our subjects are selected from
DEFECTS4J, and thereby the projects used as subjects in this
study are not the latest versions, the faults that we find
for this research question may be fixed in the subsequent
commits. Hence, the three first authors performed a code
history analysis by looking at the modifications made to
the source code of the classes involved in a fault. Based on
this analysis, the authors could examine whether the faults
found by CLING were later identified, approved, and fixed
by the developers.

The test suites generated by CLING, EVOSUITE, and
RANDOOP may contain flaky tests, i.e., test cases that exhibit
intermittent failures if executed with the same configura-
tion. To detect and remove flaky tests, we ran each generated
test suite five times. Hence, the test suites used to answer
our three research questions likely do not contain flaky
tests. In this process, we identified 8%, 3.5%, and 4.7% of
the tests generated by CLING, EVOSUITE, and RANDOOP,
respectively, as flaky. For 20 runs, we detected a total of
1,410,320 flaky tests out of 29,785,260 generated test cases.

To keep the execution time (which includes test gen-
eration, flaky test detection, and mutation and coverage
analysis) manageable, we used a cluster (with 20 CPU-cores,
384 GB memory, and 482 GB hard drive) to parallelize the
execution for our evaluation (50 simultaneous executions).
With this parallelization, the automated execution of the
whole evaluation took about five days (one day for test gen-
eration and four days for flaky test detection and mutation
and line coverage measurement).

5 EVALUATION RESULTS

This section presents the results of the evaluation and an-
swers the research questions.
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5.1 CBC achieved by CLING (RQ1.1)

As explained in Section 4.2, CLING did not identify any
coupled-branches for three pairs of classes. Figure 5 gives
the distribution of the CBC coverage achieved by CLING for
137 pairs of classes. In total, CLING could generate at least
one test suite achieving a coupled-branches coverage of at
least 50% for 87 out of 137 class pairs. Figure 6 presents the
coupled-branches coverage of TCLING in all projects. On
average (the diamonds in Figure 6) the test suites generated
by CLING cover 49.1% of the coupled-branches.

The most covered couples are in the time project
(62.4% on average), followed by math (61.9% on average)
and lang (48.9% on average). The least covered couples
are in the closure (23.2% on average) and mockito
projects (33.6% on average), which are also the projects
with the highest number of coupled-branches in Table 1
(10,542 coupled-branches on average for all the class pairs
in closure and 1,185 coupled-branches on average in
mockito).

For 9 caller-callee pairs, CLING could not generate a test
suite able to cover at least one coupled branch during 20
executions: 3 pairs from math, 3 pairs from mockito, 2
pairs from closure, and 1 from lang. In the class pair from
lang, CLING could not cover any coupled branch because
the callee class (StringUtils) misleads the search process
(we detail the explanation in Section 5.2). The remaining
8 pairs cannot be explained solely by the complexities of
the caller (with a cyclomatic complexity ranging from 8 to
5,034 for those classes) and the callee (with a cyclomatic
complexity ranging from 1 to 2,186) or the number of
call sites (ranging from 1 to 177). This calls for a deeper
understanding of the interactions between caller and callee
around the call sites. In our future work, we plan to re-
fine the caller-callee pair selection (for which we currently
looked at the global complexity of the classes) to investigate
the local complexity of the classes around the call sites.

Summary (RQ1.1). On average, the generated tests by
CLING cover 49.1% of coupled-branches. In 87 out of 137
(59.2%) of the pairs, these test suites achieve a CBC higher
than 50%.
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Fig. 7. Non-parametric multiple comparisons (i.e., mean ranks with
confidence interval) in terms of CBC score for TCLING (Cling), TEvoR

(EvoR), and TRan (Ran) using Friedman’s test with Nemenyi’s post-hoc
procedure.

5.2 CBC achieved by CLING vs. unit tests (RQ1.2)
Since TEvoE test suites cover only branches in the callee
class (i.e., it does not call any methods in the caller class), the
coupled-branches coverage achieved by these tests is always
zero. Hence, for this research question, we compare the tests
generated by CLING (TCLING) against the tests generated
by RANDOOP (TRan) and EVOSUITE applied to the caller
class (TEvoR) w.r.t. coupled-branches coverage.

Figure 6 presents the coupled-branches coverage of
TCLING , TRan, and TEvoR for all projects. The number of
covered coupled-branches by TCLING is higher in total (all
in Figure 6). On average (the diamonds in Figure 6), the
test suites generated by CLING (49.1%) cover more coupled-
branches compared to 37.8% for TEvoR, and 27.2% for TRan.
On average, the coupled-branches coverage achieved by
unit tests is lower than the one achieved by CLING in all
of the projects except lang. The average coupled-branches
coverage of EVOSUITE in this project is 58%, compared to
48.9% for CLING. We also observe a wider distribution of
the CBC coverage for TCLING (with a median of 51.0%
and an IQR of 78.2%) compared to TEvoR (with a median
of 30.7% and an IQR of 59.0%) and TRan (with a median
< 1.0% and an IQR of 57.1%).

We further compare the different test suites using Fried-
man’s non-parametric test for repeated measurements with
a significance level α = 0.05 [72] . This test is used to test the
significance of the differences between groups (treatments)
over the dependent variable (CBC coverage in our case).
We complement the test for significance with Nemenyi’s
post-hoc procedure [73], [74]. Figure 7 provides a graph-
ical representation of the ranking (i.e., mean ranks with
confidence interval) of the different test suites. According
to the Friedman test, the different treatments (i.e., CLING,
EVOSUITE, and RANDOOP) achieve significantly different
CBC coverage (p-values < 0.001). According to Figure 7,
the average rank of CLING is much smaller than the average
ranks of the two baselines. Furthermore, the differences
between the average rank of TCLING and the average rank
of the two baselines are larger than the critical distance
CD = 0.283 determined by Nemenyi’s post-hoc procedure.
This indicates that TCLING achieves a significantly higher
CBC coverage than TEvoR and TRan.

Finally, we have manually analyzed the search progress
of CLING for pairs of classes where the number of covered

coupled-branches is low (i.e., lower than 10). We noticed
that CLING is counter-productive for specific class pairs
where the callee class is StringUtils. In those cases, the
test cases generated during the search initialization throw
a NoSuchFieldError in the callee class (StringUtils
here). Since these test cases achieve small approach levels
and branch distances from the callee branches, they are fitter
(i.e., their fitness value is lower) than other test cases. There-
fore, these test cases are selected for the next generation and
drive the search process in local optima.

Summary (RQ1.2). On average, the generated test suites
by CLING cover 11.3% more coupled-branches compared
to EVOSUITE and 21.9% more coupled-branches compared
to RANDOOP.

5.3 Line Coverage and Mutation Scores (RQ2.1)
Figure 8a shows line coverage of the callee classes (E)
for the test suites generated by the different approaches.
On average, CLING covers 39.5% of the lines of the callee
classes. This is lower compared to unit-level tests generated
using EVOSUITE (58.2% for TEvoE and 59.4% for TEvoR),
and RANDOOP (47.4% for TRan).

To understand the fault revealing capabilities of CLING
compared to unit-level and random test suites, we first show
in Figure 8b the overall mutation scores when mutating
class E, and apply the test suite TEvoE , TEvoR, TRan, and
TCLING . Similar to line coverage, test suites optimized for
overall branch coverage achieve a total higher mutation
score (35.4% for TEvoE and 34.2% for TEvoR on average),
simply because a mutant that is on a line that is never
executed cannot be killed. RANDOOP achieves on average
the best mutation score (38% for TRan), which would tend
to indicate that despite a lower line coverage, indirect testing
of the callee class through its dependencies enables discov-
ering more faults. TCLING scores lower (20.0% on average),
since CLING searches for dedicated interaction pairs, but
does not try to optimize overall line coverage. Note that
TCLING achieves the highest average mutation score for
classes in math, while it achieves the lowest mutation score
for classes in the mockito project.

Our results are consistent with the design and objectives
of the tools: EVOSUITE seeks to cover all the branches of the
class under test; CLING targets specific pairs of branches
between the caller and callee; and RANDOOP performs
(feedback-directed) random testing.

Summary (RQ2.1). The results in terms of line coverage
are as expected, namely that EVOSUITE has the high-
est average line coverage (58.2% for TEvoE and 59.4%
for TEvoR), followed by RANDOOP (47.4%) and CLING
(39.5%). Regarding mutation score, RANDOOP achieved
the highest mutation score on average (38%), followed
by EVOSUITE (35.4% for TEvoE and 34.2% for TEvoR

on average) and CLING (20.0%). This tends to indicate
that despite a lower line coverage, indirect testing of the
callee class through its dependencies in RANDOOP enables
discovering more faults.

5.4 Combined Mutation Analysis (RQ2.2)
Figure 8b shows that unit test suites do not kill almost half of
the mutants. CLING targets more mutants, including those
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Fig. 8. Effectiveness of TCLING (Cling), TEvoE (EvoE), TEvoR (EvoR), and TRan (Ran). (⋄) denotes the arithmetic mean and (—) indicates the
median.
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Fig. 9. Increases (∆) of the mutation score when combining TCLING
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TEvoE+EvoR (EvoE+R), and TRan (Ran). (⋄) denotes the arithmetic
mean and (—) is the median.

that remain alive with unit tests. In Figure 9, we report
the improvement (∆) in the mutation score when executing
TCLING in addition to different test suites (TEvoE , TEvoR,
and TRan), and their unions (TEvoE+EvoR).

On average, 13% of the mutants are killed only by
TCLING compared to both TEvoE , the unit test suites op-
timized for the class under test (E), and TRan, randomly
generated tests. This difference decreases to 10.4% if we use
TEvoR the unit test suites exercising E via the caller class R
(as more class interactions are executed). The difference with
traditional unit testing is still 7.7%, when comparing CLING
with the combined unit test suites TEvoE+EvoR, exercising
E directly as much as possible as well as indirectly via call
sites in R.

The outliers in Figure 9 are also of interest: for 20 classes
(out of 137), CLING was able to generate a test suite where
more than half of the mutants were killed only by TCLING ,
compared to TEvoE (i.e., +50% of mutation score). When
compared to TEvoE+EvoR there are 4 classes for which
TCLING kills more than half of the mutants that are killed
by neither TEvoE nor TEvoR. This further emphasizes the
complementarity between the unit and integration testing.
Comparing to randomly generated tests TRan, TCLING kills

more than half of the mutants for 13 classes, demonstrating
the need for guidance when generating class integration
tests.

Table 2 presents the status of the mutants that are killed
by TCLING but not by unit-level or random test cases. What
stands out is that many mutants are in fact covered, but
not killed by unit-level or random test suites. Here CLING
leverages the context of the caller, not only to reach a
mutant, but also to propagate the (modified) values inside
the caller’s context, so that the mutants can be eventually
killed.

5.4.1 Mutation Operators
We analyzed the mutation operators that generate mutants
that are exclusively killed by TCLING . We categorize the
mutation operators implemented in PIT into integration-
level and non-integration-level. For this categorization, we
rely on the definition of mutation operators for integration
testing provided by Delamaro et al. [75]. We observed that
ten of the mutation operators implemented in PIT inject
integration-level faults. These operators can be mapped to
two integration-level operators defined by Delamaro et al.
[75]: RetStaRep, which replaces the return value of the called
method, and FunCalDel, which removes the calls to void
method calls and replaces the non-void method calls by a
proper value.

Table 3 lists the number of mutants killed exclusively by
TCLING and grouped by mutation operators. Integration-
level operators are indicated in bold with the mapping to
either RetStaRep or FunCalDel between parenthesis. As we
can see in this table, the most frequently killed mutants
are produced by an integration-level operator, and other
integration-level operators also produce frequently killed
mutants. We can see that all of the ten integration-level
mutation operators generate mutants that can be killed
using CLING.

Furthermore, some of the most frequently killed mu-
tants are not produced by integration-level operators. For
instance, operator NegateConditionalsMutator, which mutates
the conditions in the target class, produces the second most
frequently killed mutants. These mutants are not killed but
also not covered by tests generated by EVOSUITE.
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TABLE 2
Status (for TEvoR, TEvoE , and TRan) of the mutants killed solely by TCLING . Not-covered denotes the number of mutants killed by TCLING ,

which are not covered by EVOSUITE (or RANDOOP) test suites, and survived denotes the number of mutants killed by TCLING , which are
covered by EVOSUITE (or RANDOOP) tests but not killed. The numbers between parentheses denote the percentage of mutants.

Test Suite closure lang math mockito time
not-covered survived not-covered survived not-covered survived not-covered survived not-covered survived

TEvoE 1,988 ( <1% ) 881 ( <1% ) 3,247 ( 1% ) 403 ( <1% ) 6,178 ( 5% ) 1,747 ( 1% ) 5,604 ( 4% ) 2,414 ( 2% ) 10,905 ( 3% ) 5,920 ( 1% )
TEvoR 2,480 ( <1% ) 780 ( <1% ) 2,797 ( <1% ) 851 ( <1% ) 5,310 ( 4% ) 2,558 ( 2% ) 4,867 ( 4% ) 3,144 ( 2% ) 7,431 ( 2% ) 9,150 ( 2% )
TRan 18,935 ( 2% ) 246 ( <1% ) 1,834 ( 1% ) 343 ( <1% ) 13,316 ( 1% ) 1,381 ( 1% ) 18,419 ( 1% ) 949 ( 1% ) 18,073 ( 4% ) 5,942 ( 1% )

1 boolean evaluateStepC(StepInterpolator interpolator
){

2 if (functions.isEmpty()){[...]}
3 if (! initialized) {[...]}
4 for ([...]) {
5 [...];
6 // calling the callee class in the next line.
7 if (state.evaluateStep(interpolator)){
8 // Changing variable first
9 [...]

10 }
11 }
12 return first != null;
13 }

(a) Method evaluateStepC declared in the caller
class SwitchingFunctionsHandler.

1 boolean evaluateStep(final StepInterpolator
interpolator){

2 [...]
3 for([...]){
4 if([...]){
5 [...];
6 }
7 if([...]){
8 [...];
9 }

10 }
11 [...];
12 return false; return true; //mutant
13 }

(b) Mutant evaluateStep declared in the callee class
switchsState.

Fig. 10. Example of a integration-level mutant killed only by CLING From Apache commons-math.

TABLE 3
Number of mutants killed solely by TCLING and grouped by mutation
operators. Integration-level operators are highlighted in bold face and

the corresponding integration-level mutation operator defined by
Delamaro et al. [75] is indicated between parenthesis.

Against EvoSuite Randoop

Mutation operator Rank #kills Rank #kills

NonVoidMethodCallMutator (RetStaRep) 1 1,983 1 2,340
NegateConditionalsMutator 2 1,638 2 2,020
InlineConstantMutator 3 1,201 5 1,183
ReturnValsMutator (RetStaRep) 4 1,195 4 1,414
RemoveConditionalMutator EQUAL IF 5 1,110 3 1,424
RemoveConditionalMutator EQUAL ELSE 6 1,015 6 1,138
NullReturnValsMutator (RetStaRep) 7 578 7 695
ArgumentPropagationMutator (FunCalDel) 8 518 9 539
MathMutator 9 513 11 398
MemberVariableMutator 10 458 8 576
ConstructorCallMutator (FunCalDel) 11 379 10 481
RemoveConditionalMutator ORDER IF 12 375 13 348
VoidMethodCallMutator (FunCalDel) 13 374 12 394
RemoveConditionalMutator ORDER ELSE 14 348 16 270
ConditionalsBoundaryMutator 15 322 15 272
PrimitiveReturnsMutator (RetStaRep) 16 309 14 295
NakedReceiverMutator 17 264 17 235
IncrementsMutator 18 143 19 154
BooleanTrueReturnValsMutator (RetStaRep) 19 142 18 162
RemoveIncrementsMutator 20 106 22 89
RemoveSwitchMutator 21 89 20 134
EmptyObjectReturnValsMutator (RetStaRep) 22 71 21 105
BooleanFalseReturnValsMutator (RetStaRep) 23 63 23 83
InvertNegsMutator 24 38 24 44
SwitchMutator 25 16 25 36

As an example of a mutant killed only by TCLING ,
Figure 10b illustrates one of the mutants in method
evaluateStep in class SwitchState (callee class) from
the Apache commons-math project. This mutant is pro-
duced by an integration-level mutation operator (RetStaRep)
that replaces a boolean return value by true. Method
evaluateStep is called from the method evaluateStepC

Listing 3
CLING test case killing mutant in Figure 10.

1 public void test07() throws Throwable {
2 [...]
3 boolean boolean1 = switchingFunctionsHandler0.

evaluateStepC(stepInterpolator0);
4 assertTrue(boolean1 == boolean0);
5 assertFalse(boolean1);
6 }

(Figure 10a) declared in SwitchingFunctionsHandler
(caller class). Method evaluateStepC must return false
if it calls the callee class in a certain situation: (i) the
variable first in the caller class is null, and (ii) the callee
method returns false because of the execution of line 12 in
Figure 10b.

The unit test suites generated by EVOSUITE targeting
SwitchState (TEvoE) or class SwitchingFunctions-
Handler (TEvoR) both cover the mutant but do not kill
it. TEvoE easily cover the mutant statement, but it does
not have any assertion to check the return value. TEvoR

also covers this statement by calling the right method in
SwitchingFunctionsHandler. However, as is depicted
by Figure 10, both methods in caller and callee class have
multiple branches. So, TEvoR covers the mutant from an-
other path, which does not reveal the change in the boolean
return value.

In contrast, this mutant is killed by TCLING , targeting
SwitchingFunctionsHandler and SwitchState as the
caller and callee classes, respectively (Listing 3). According
to the assertion in line 5 of this test case, switching-
FunctionsHandler0.evaluateStep must return false.
However, the mutant changes the returned value in line 7 of
the caller class (Figure 10a), and thereby the true branch
of the condition in line 7 is executed. This true branch
changes the value of variable first from null to a non-
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TABLE 4
Categorization and number (#) of the fault revealing test cases.

Category # Description

Confirmed 7 The test case exposes a fault that has been
fixed (e.g., by updating the code or the doc-
umentation), or has been marked as such in
the source code (e.g., using a comment).

Pending 4 The test case potentially exposes a fault that
has not been fixed.

Deprecated 14 The test case is not relevant anymore as
the source code it executes has been deleted
from the project (e.g., in the case of a depre-
cated method).

null value. Hence, the evaluateStep method in the caller
class returns true in line 12. So, the assertion in the last line
of the method in Listing 3 kills this mutant.

Summary (RQ2.2). The test suite generated by CLING for
a caller R and callee E, can kill different mutants than unit
and random test suites for E, R or their union, increasing
the mutation score on average by 13.0%, 10.4%, and 7.7%,
respectively, for EVOSUITE, and 13% for RANDOOP, with
outliers well above 50%. Our analysis indicates that many
of the most frequently killed mutants are produced by
integration-level mutation operators.

5.5 Integration Faults Exposed by CLING (RQ3)

In our experiments, CLING generates 50 test cases that trig-
gered unexpected exceptions in the subject systems. None
of those exceptions were observed during the execution of
the test cases generated by EVOSUITE and RANDOOP.

The first and second author independently performed a
manual root cause analysis for all 50 unexpected exceptions
to check if they actually stemmed from an integration-level
fault. For this analysis, we check the API documentation to
see if the generated test cases break any precondition. We
indicated a test case as a fault revealing test if it does not vi-
olate any precondition according to the documentation, and
it truly exposes an issue about the interaction between the
caller and callee class. We found that out of the 50 test cases
generated by CLING, 25 are fault revealing. The remaining
25 test cases trigger exceptions expected according to the
documentation (5 tests), violate preconditions specified in
the documentation (14 tests) or in the existing tests (1 test),
return a wrong value for a method call on a mocked object (3
tests), or do not actually expose an issue between the caller
and the callee class (2 tests).

To analyze if developers have already identified the
faults in the following commits, the first three authors
analyzed the code history of the classes involved in the
detected faults. In this analysis, we manually checked all
of the modifications made to the involved classes to see if
the faults are fixed. Based on this analysis, we classify the
25 fault revealing test in one of the categories reported in
Table 4. According to this Table, seven faults (found only by
tests generated via CLING) were detected, confirmed, and
fixed by developers in the next commits. We describe here-
after a representative example of these faults. The detailed

descriptions of the analysis for all 25 fault revealing test
cases are available in our replication package [67].4

Example. To illustrate the type of problem detected by
CLING, consider the generated test case in Figure 11a and
the induced stack trace (for a NullPointerException)
in Figure 11b.5 This test is produced by CLING for classes
UnionType (caller class) and JSType (callee class). In this
scenario, the UnionType is a sub-class of JSType. The
test (Figure 11a Line 3) instantiates a UnionType object
and passes a null value for the first parameter of its
constructor. This constructor sets the value of a local variable
(registry) to the value passed as the first parameter of the
constructor (here, null). After instantiating UnionType,
the generated test calls getTypesUnderInequality
(Figure 11a Line 6), which in turns indirectly calls
isEmptyType in the superclass. The isEmptyType
method tries to use the attribute registry. Since this at-
tribute is null, calling getTypesUnderInequality leads
to a NullPointerException. No indication in the docu-
mentation specifies that the registry parameter should
not be null, and no checks are done on the value of the
input parameters.

By reviewing the code history of UnionType class, we
observed that this fault has been fixed.6 A UnionType
should be instantiated only by a UnionTypeBuilder to en-
sure that it is instantiated properly, but this was not enforced
in the source code nor documented in the class. The fixing
commit message indicates that it refactors the “Union-
TypeBuilder into UnionType.Builder, a nested class
of UnionType” to “better reflect the entangled nature of
the two classes.” Concretely, the commit (i) refactors the
UnionTypeBuilder class into UnionType.Builder, a
nested class of UnionType; (ii) makes UnionType’s con-
structor private; and (iii) updates the UnionType construc-
tor’s documentation to indicate that this class has to be
instantiated using its builder.

We also analyzed the tests generated by baseline tools
for this case to understand why this specific fault is substan-
tially less likely to be captured by EVOSUITE and RANDOOP.
For EVOSUITE, since the tool concentrates on coverage of
a single class, the tests generated by EVOSUITE only con-
centrate on covering the branches in the given class under
test. So, in the EVOSUITE test generation process, tests cases
that achieve higher branch coverage have higher priority
than this failure capturing test case. This prioritization leads
EVOSUITE to exclude this test case from the most opti-
mized solutions during the search process. In contrast with
EVOSUITE, CLING’s search objectives (i.e., CBC coverage)
are designed to exercise the interactions between given
class pairs and thereby give a higher priority to failures
that can be captured in this interaction. Moreover, since
RANDOOP gets a set of classes under test (i.e., classes that

4. Also available online at https://github.com/STAMP-project/
Cling-application/blob/master/data analysis/manual-analysis/
failure-explanation.md.

5. The details are available at https://github.com/STAMP-project/
Cling-application/blob/master/data analysis/manual-analysis/
failure-explanation.md#st28

6. The fixing commit is https://
github.com/google/closure-compiler/commit/
cfc0fab3dc2be49692a4fe9162b8095c934f6c41.

https://github.com/STAMP-project/Cling-application/blob/master/data_analysis/manual-analysis/failure-explanation.md
https://github.com/STAMP-project/Cling-application/blob/master/data_analysis/manual-analysis/failure-explanation.md
https://github.com/STAMP-project/Cling-application/blob/master/data_analysis/manual-analysis/failure-explanation.md
https://github.com/STAMP-project/Cling-application/blob/master/data_analysis/manual-analysis/failure-explanation.md#st28
https://github.com/STAMP-project/Cling-application/blob/master/data_analysis/manual-analysis/failure-explanation.md#st28
https://github.com/STAMP-project/Cling-application/blob/master/data_analysis/manual-analysis/failure-explanation.md#st28
https://github.com/google/closure-compiler/commit/cfc0fab3dc2be49692a4fe9162b8095c934f6c41
https://github.com/google/closure-compiler/commit/cfc0fab3dc2be49692a4fe9162b8095c934f6c41
https://github.com/google/closure-compiler/commit/cfc0fab3dc2be49692a4fe9162b8095c934f6c41
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1 public void testFraction() {
2 [...]
3 UnionType unionType0 = new UnionType((

JSTypeRegistry) null, immutableList0);
4
5 // Undeclared exception!
6 unionType0.getTypesUnderInequality(unionType0);
7 }

(a) CLING test case triggering the crash in Figure 11b.

1 java.lang.NullPointerException:
2 at [..].JSType.isEmptyType([..]:159)
3 at [..].JSType.testForEqualityHelper([..]:666)
4 at [..].JSType.testForEquality([..]:655)
5 at [..].NumberType.testForEquality([..]:63)
6 at [..].JSType.getTypesUnderInequality([..]:962)
7 at [..].UnionType.getTypesUnderInequality([..]:486)
8 at [..].JSType.getTypesUnderInequality([..]:957)
9 at [..].UnionType.getTypesUnderInequality([..]:486)

(b) Exception captured only by CLING.

Fig. 11. Example of test case generated by CLING and exposing a fault in the Closure project.

are direct or indirect dependencies of the given caller and
callee classes), it has a higher search space to explore. In this
case, RANDOOP generates tests using 30 classes indicated by
jdeps (25 classes from the project under test and five from
Java). In total, these classes contain 867 visible (non-private)
methods. Also, the tests generated by RANDOOP initialize
and use many objects, and hence the length of test cases
are relatively higher than test cases generated by EVOSUITE
and CLING. Consequently, by looking at tests generated by
RANDOOP, we can see that this tool generates many test
cases that lead to higher coverage in the given set of classes
but could not explore the particular part of the search space
to capture this fault in the given time budget. However,
theoretically, by giving enough time budget to RANDOOP,
this tool should be able to cover this failure. In contrast,
since CLING focuses on the interactions between two given
classes, thereby having a smaller search space, it manages to
capture this failure in a shorter time (i.e., 5 minutes).

Summary (RQ3). Our manual analysis indicates that
CLING-based automated testing of ⟨caller, callee⟩ class
pairs can expose actual problems that are not found by
unit testing either the caller or callee class individually.
These problems relate to conflicting assumptions on the
safe use of methods across classes (e.g., due to undoc-
umented exception throws, implicit assumptions on pa-
rameter values, etc.). Several of these faults are identified,
confirmed, and fixed later by developers in subsequent
commits.

6 DISCUSSION

6.1 Applicability

The CBC criterion and its implementation in CLING con-
sider pairs of classes and targets the integration between
them. We did not propose any procedure for selecting pairs
of classes to give in input to CLING. Since the technique
requires pairs of classes to test, it would be time-consuming
and tedious for developers to manually collect and provide
the class pairs. Hence, we suggest using an automated
process for class pair selection, as well. In this study, we
implemented a tool that automatically analyzes each class
pair to find the ones with high cyclomatic complexity and
coupled branches (according to the CBC criterion defined in
this article). This procedure is explained in Section 4.2.

Besides, our approach can be further extended by in-
corporating automated integration test prioritization ap-
proaches and selecting classes to integrate according to a

predefined ordering [30], [32], [33], [34], [35], [37], [38], [39],
[40], [41]. So, the end-to-end process of generating test for
class integrations can be automated to require a minimal
manual effort from the developer.

Moreover, since it is easier for developers to handle and
integrate generated test cases in continuous integration, the
number of tests generated by test generation approaches
is also playing a crucial role in the effectiveness and ap-
plicability of techniques. Although CLING generates test
cases that kill mutants and capture integration-level failures
that cannot be covered by unit and random testing, this
approach generates less test cases compared to EVOSUITE
and RANDOOP. In total, CLING generated 64,537 test cases
in this experiment. This number is lower than EVOSUITE
(183,795 test cases) and RANDOOP (29,536,928 test cases).

6.2 Test generation cost

One of the challenges in automated class integration testing
is detecting the integration points between classes in a SUT.
The number of code elements (e.g., branches) that are related
to the integration points increases with the complexity of
the involved classes. Finding and testing a high number of
integration code targets increases the time budget that we
need for generating integration-level tests.

With CBC, the number of coupled branches to exercise
is upper bounded to the cartesian product between the
branches in the caller R and the callee E. Let BR be the
set of branches in R and BE the set of branches in E, the
maximum number of coupled branches CBR,E is BR×BE .
In practice, the size of CBR,E is much smaller than the
upper bound as the target branches in the caller and callee
are subsets of R and E, respectively. Besides, CBC is defined
for pairs of classes and not for multiple classes together. This
substantially reduces the number of targets we would incur
when considering more than two classes at the same time.

While a fair amount of the test generation process can
be automated, multiple instances of this approach can be
executed simultaneously, and thereby, this approach can be
used to generate test suites for a complete project at once in
a reasonable amount of time. For instance, in this study, we
managed to test each of the 140 class pairs with CLING for
20 times in less than a day thanks to a parallelization of the
executions.

Finally, we have used a five minutes time budget to
test each class pair’s interactions. Since CLING considers
each coupled branch as an objective for the search process,
we could have defined a different search budget per pair,
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depending on the number of objectives. Similarly to EVO-
SUITE and RANDOOP, the outcome of CLING may differ
depending on the given time budget. Defining the best
trade-off between the search-budget and effectiveness of the
tests generated using CLING is part of our future work.

6.3 Effectiveness

To answer RQ2, we analyzed the set of mutants that are
killed by CLING (integration tests), but not by the unit
and random test suites for the caller and callee separately
(boxes labeled with TEvoE+R and TRan in Figure 9). The
test suite TCLING was generated using a search budget of
five minutes. Similarly, the unit-level suites were generated
with a search budget of five minutes for each caller and
callee class separately. Therefore, the total search budget
for unit test generation (TEvoE+R) is twice as large: 10
minutes, which corresponds to the time budget allocated
to RANDOOP (TRan) as it generates random tests for both
the caller and the callee. Despite the larger search budget
spent on unit and random testing, there are still mutants and
faults detected only by CLING and in less time. It is worth
mentioning that, theoretically, all of these approaches might
capture these failures with an infinite time budget. The point
is that Cling can capture these failures faster, thanks to the
CBC criterion.

The CBC criterion and its implementation in CLING
are not an alternative to unit or random testing. In fact,
integration test suites do not subsume unit-level and ran-
dom suites as the different types of suites focus on different
aspects of the system under test. Our results (RQ2) confirm
that integration and unit and random testing are comple-
mentary. Indeed, some mutants can be killed exclusively
by unit or random test suites: e.g., the overall mutation
scores for the unit tests TEvoE and TEvoR, and random tests
TRan are larger than the overall mutation scores of CLING.
This higher mutation score is expected due to the larger
branch coverage achieved by the unit and random tests
(i.e., coverage is a necessity but not a sufficient condition
to kill mutant).

Instead, the CBC criterion and its implementation in
CLING focuses on a subset of the branches in the units
(caller and callee), but target the integration between them
more extensively. In other words, the search is less broad
(fewer branches), but more in-depth (the same branches are
covered multiple times within different pairs of coupled
branches). This more in-depth search allows killing mutants
that could not be detected by satisfying unit-level criteria.

Furthermore, our results in RQ3 indicate that CBC and
its implementation in CLING steer us toward finding bugs
that are not detectable by other tests. In Section 5.5, we have
shown that the tests generated by CLING capture exceptions,
which are not detectable by unit or random tests. We have
carefully performed an extensive manual analysis on these
stack traces to identify whether they expose software faults.
According to this manual analysis, we have detected 25 fail-
ures. Finally, for external confirmation, we have investigated
if these 25 faults are identified and fixed by developers in
the subsequent commits. The results of our investigation
have confirmed that developers have actually fixed some
of the faults in the following commits. To demonstrate the

impact of the CLING in finding bugs, we have presented
an example in Section 5.5. Moreover, the other faults, which
were confirmed by our investigation, are available in our
replication package [67]. While our evaluation pointed to
25 real faults, we have not yet applied CLING in a live
setting in a currently active project. Doing so requires a
project that does intensive (unit) testing already, and whose
developers are interested in exploring issues raised by tests
dedicated to exercising various inter-class interactions. As
part of our future work, we intend to set up and conduct
such a (longitudinal) study.

7 THREATS TO VALIDITY

Internal validity. Our implementation may contain bugs.
We mitigated this threat by reusing standard algorithms
implemented in EVOSUITE, a widely used state-of-the-art
unit test generation tool. And by unit testing the different
extensions (described in Section 3.3) we have developed.

To take the randomness of the search process into ac-
count, we followed the guidelines of the related literature
[76] and executed CLING, EVOSUITE, and RANDOOP 20
times to generate the different test suites (TCLING , TEvoE ,
TEvoR, TRanE , and TRanR) for the 140 caller-callee classes
pairs. We have described how we parametrize CLING, EVO-
SUITE, and RANDOOP in Sections 3.2 and 4. We left all other
parameters to their default value, as suggested by related
literature [52], [77], [78].

External validity. We acknowledge that we report our re-
sults for only five open-source projects. However, we recall
here their diversity and broad adoption by the software en-
gineering research community. We also did not use the latest
version of those five projects. On the one hand, it prevented
us from reporting potential faults to the developers, which
could have provided anecdotal evidence of the capability of
the approach to find faults, but would have not provided
any information in case of a rejection of a pull request
by the developers. On the other hand, it allowed us to
investigate the history of the code base and identify whether
developers fix these faults, which were identified in our
study, in the further commits. Additionally, considering the
broad adoption of the projects by the software engineering
community, it enables comparisons with the state-of-the-art
and future approaches.

Construct validity. The identification and analysis of
the integration faults done in RQ3 have been performed
by the first and second authors independently. The subse-
quent code history analysis and categorization have been
performed by the three first authors independently. Each
documented analysis was reviewed by one of the other
authors involved.

Reproducibility. We provide CLING as an open-source
publicly available tool as the data and the processing scrips
used to present the results of this paper.7 Including the sub-
jects of our evaluation (inputs) and the produced test cases
(outputs). The full replication package has been uploaded
on Zenodo for long-term storage [67].

7. https://github.com/STAMP-project/Cling-application

https://github.com/STAMP-project/Cling-application
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8 CONCLUSION AND FUTURE WORK

In this paper we have introduced a testing criterion for
integration testing, called the Coupled Branches Coverage
(CBC) criterion. Unlike previous work on class integration
testing focusing on (costly) data-flow analysis, CBC relies
on a (lighter) control flow analysis to identify couples of
branches between a caller and a callee class that are not
trivially executed together, resulting in a lower number of
test objectives.

Previous studies have introduced many automated unit
and system-level testing approaches for helping developers
to test their software projects. However, there is no approach
to automate the process of testing the integration between
classes, even though this type of testing is one of the fun-
damental and labor-intensive tasks in testing. To automate
the generation of test cases satisfying the CBC criterion,
we defined an evolutionary-based class integration testing
approach called CLING.

In our investigation of 140 branch pairs, collected from 5
open source Java projects, we found that CLING has reached
an average CBC score of 49.1% across all classes, while for
some classes we have reached 90% coverage. More tangibly,
if we consider mutation coverage and compare automati-
cally generated random and unit tests with automatically
generated integration tests using the CLING approach, we
find that our approach allows to kill 7.7% (resp. 13%) of
mutants per class that cannot be killed by tests generated
with EVOSUITE (resp. RANDOOP). Finally, we identified 25
faults causing system crashes that could be evidenced only
by the generated class-integration tests.

The results indicate a clear potential application perspec-
tive, more so because our approach can be incorporated into
any integration testing practice. Additionally, CLING can
be applied in conjunction with other automated unit and
system-level test generation approaches in a complementary
way.

From a research perspective, our study shows that
CLING is not an alternative for unit or random testing.
However, it can be used for complementing unit testing for
reaching higher mutation coverage and capturing additional
crashes which materialize during the integration of classes.
These improvements of CLING are achieved by the key idea
of using existing usages of classes in calling classes in the
test generation process.

For now, CLING only tests the call-coupling between
classes. In our future work, we will extend our approach
to explore how other types of coupling between classes
(e.g., parameter coupling, shared data coupling, and exter-
nal device coupling) can be used to refine the couples of
branches to target. Indeed, our study indicates that despite
the effectiveness of CLING in complementing unit tests, lots
of objectives (coupled branches) remain uncovered during
our search process. Hence, in future studies, we will enhance
the detection of infeasible branches to remove them from the
search objectives and perform a fitness landscape analysis of
the search process to identify potential bottlenecks.

Finally, this study mostly focuses on examining the
results of this approach on coupled branches coverage,
mutation coverage, and detected faults. In our future work,
we will explore how CLING can be effectively integrated

with a development lifecycle (for instance, in a continuous
integration process) and how automatically generated class
integration tests can help developers to detect potential
faults and debug their software.

In this study, we have evaluated CLING against state-of-
the-art test generation tools (i.e., EVOSUITE and RANDOOP).
In our future work, we would like to compare the tests
generated by CLING with the manually written tests. Also,
since CBC is a new criterion, we aim to perform another
study to investigate how well the class integration tests
written by developers cover CBC targets.

Finally, since this paper is the first step toward gen-
erating class integration tests, we only collected the call-
sites from the static analysis. However, a dynamic analyzer
is able to detect more call-sites, and thereby CLING can
generate more tests that cover class interactions that can
only be identified dynamically.
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