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ABSTRACT
Writing a test case reproducing a reported software crash is a com-
mon practice to identify the root cause of an anomaly in the soft-
ware under test. However, this task is usually labor-intensive and
time-taking. Hence, evolutionary intelligence approaches have been
successfully applied to assist developers during debugging by gen-
erating a test case reproducing reported crashes. These approaches
use a single fitness function called Crash Distance to guide the
search process toward reproducing a target crash. Despite the re-
ported achievements, these approaches do not always successfully
reproduce some crashes due to a lack of test diversity (premature
convergence). In this study, we introduce a new approach, called
MO-HO, that addresses this issue via multi-objectivization. In par-
ticular, we introduce two newHelper-Objectives for crash reproduc-
tion, namely test length (to minimize) andmethod sequence diversity
(to maximize), in addition to Crash Distance. We assessed MO-
HO using five multi-objective evolutionary algorithms (NSGA-II,
SPEA2, PESA-II, MOEA/D, FEMO) on 124 non-trivial crashes stem-
ming from open-source projects. Our results indicate that SPEA2
is the best-performing multi-objective algorithm for MO-HO. We
evaluated this best-performing algorithm for MO-HO against the
state-of-the-art: single-objective approach (Single-Objective Search)
and decomposition-based multi-objectivization approach (De-MO).
Our results show that MO-HO reproduces five crashes that cannot
be reproduced by the current state-of-the-art. Besides, MO-HO im-
proves the effectiveness (+10% and +8% in reproduction ratio) and
the efficiency in 34.6% and 36% of crashes (i.e., significantly lower
running time) compared to Single-Objective Search and De-MO,
respectively. For some crashes, the improvements are very large,
being up to +93.3% for reproduction ratio and -92% for the required
running time.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging; Search-based software engineering.
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1 INTRODUCTION
When a software application crashes, a report (or issue), including
information gathered during the crash, is assigned to developers for
debugging [43]. One common practice to identify the root cause of
a crash is to provide a test case that reproduces it [45]. This test case
can later be adapted and integrated into the test suite to prevent
future regressions. However, this test case is not always available
in the crash reports. Also, depending on the amount of information
available in the report, writing this crash reproducing test case can
be time-consuming and labor-intensive [39].

Consequently, various approaches have been proposed in the
literature to automate crash reproduction [4, 6, 23, 31, 32, 36, 39, 44].
These approaches use the information about a crash (e.g., stack
traces from crash reports) to generate a crash reproducing test case
by utilizing different techniques such as symbolic execution, model
checking, etc. Among these approaches, two evolutionary-based
techniques have been introduced: ReCore [36] and EvoCrash [39].
These two approaches generate test cases able, when executed,
to reproduce the target crash using single-objective evolutionary
algorithms. The empirical evaluation of EvoCrash [39] shows that
it outperforms other, evolutionary-based and non-evolutionary-
based approaches in terms of crash reproduction ratio (percentage
of crashes that could be reproduced) and efficiency (time taken to
reproduce a given crash successfully). This evaluation also confirms
that EvoCrash significantly helps developers during debugging.

EvoCrash relies on a single-objective evolutionary algorithm
(Single-Objective Search hereafter) that evolves test cases according
to an objective (Crash Distance hereafter) measuring how far a gen-
erated test is from reproducing the crash. Crash Distance combines
three heuristics: line coverage (how far is the test from executing
the line causing the crash?), exception coverage (does the test throw
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the same exception as in the crash?), and stack trace similarity (how
similar is the exception stack trace from the one reported in the
crash?). Although Single-Objective Search performs well compared
to the other crash reproduction approaches, a more extensive em-
pirical study [37] evidenced that it is not successful in reproducing
complex crashes (i.e., large stack traces). Hence, further studies to
enhance the guidance of the search process are required.

Just like any other evolutionary-based algorithm, Single-Objecti-
ve Search requires to maintain a balance between exploration and
exploitation [42]. The former refers to the generation of completely
new solutions (i.e., test cases executing new paths in the code); the
latter refers to the generation of solutions in the neighborhood
of the existing ones (i.e., test cases with similar execution paths).
Single-Objective Search ensures exploitation through Guided Muta-
tion, which guarantees that each solution contains the method call
causing the crash (and reported in the stack trace) [39]. However,
the low exploration of Single-Objective Search may lead to a lack
of diversity, trapping the search in local optima [42].

To tackle this problem, a prior study [38] investigated the usage
of Decomposition-based Multi-Objectivization (De-MO) to decom-
pose the Crash Distance in three distinct (sub-)objectives. A target
crash is reproduced when the search process fullfils all three sub-
objectives at the same time. The empirical evaluation shows that
De-MO slightly improves the efficiency for some crashes. However,
since the sub-objectives are not conflicting, their combined usage
can be detrimental for crash reproduction [38]. A recent study [13]
also conjectured that increasing diversity via additional objective is
a feasible yet unexplored research direction to follow. However, no
systematic empirical study has been conducted to draw statistical
conclusions.

In this study, we investigate a new strategy to Multi-Objectivize
crash reproduction based onHelper-Objectives (MO-HO) [13] rather
than decomposition.More specifically, we add two additional helper-
objectives to Crash Distance (first objective): method sequence di-
versity (second objective) and test case length minimization (third
objective). The second objective aims to increase the diversity in
the method sequences; more diverse sequences are more likely to
cover diverse paths and, consequently, improve exploration. The
third objective aims to address the bloating effect (i.e., the gener-
ated test cases can become longer and longer after each generation
until the all of the system memory is used), as diversity can lead
to an unnecessary and counter-productive increase of the test case
length [1, 33]. Since these three objectives are conflicting, we expect
an improvement in the solutions’ diversity and, hence, improving
the effectiveness (crash reproduction ratio) and efficiency.

To assess the performance of MO-HO on crash reproduction, we
use five multi-objective evolutionary algorithms (MOEAs): NSGA-
II [10], SPEA2 [47], MOEA/D [46], PESA-II [8], and FEMO [25].
We apply them to 124 non-trivial crashes from JCrashPack [37], a
crash benchmark used by previous crash reproduction studies [12].
Those crashes can only be reproduced by a test case that brings
the software under test to a specific state and invokes the target
method with one or more specific input parameters. We performed
an internal assessment among MO-HO algorithms to find the best
multi-objective evolutionary algorithm for this optimization prob-
lem. According to the results observed in this assessment, SPEA2

0 java.lang.ArrayIndexOutOfBoundsException: 4

1 at [...]. FastDateParser.toArray(FastDateParser.java :413)

2 at [...]. FastDateParser.getDisplayNames ([...]:381)

3 at [...]. FastDateParser$TextStrategy.addRegex ([...]:664)

4 at [...]. FastDateParser.init ([...]:138)

5 at [...]. FastDateParser.<init >([...]:108)

6 [...]

Figure 1: LANG-9b crash stack trace [24, 37]

outperforms other MOEAs in crash reproduction using MO-HO
helper-objectives.

Furthermore, we compared the best-performingMO-HO (MO-HO
+ SPEA2) against two state-of-the-art approaches (Single-Objecti-
ve Search [39] and De-MO [38]) from the perspectives of crash
reproduction ratio and efficiency. Our results show that MO-HO
outperforms the state-of-the-art in terms of crash reproduction
ratio and efficiency. This algorithm improves the crash reproduction
ratio by up to 100% and 93.3% (10% and 8%, on average) compared
to Single-Objective Search and De-MO, respectively. Also, after five
minutes of search, MO-HO reproduces five and six crashes (4% and
5% more crashes) that cannot be reproduced by Single-Objective
Search and De-MO, respectively. In addition, MO-HO reproduces
crashes significantly faster than Single-Objective Search andDe-MO
in 34.6% and 37.9% of the crashes, respectively.

A replication package, enabling the full-replication of our evalu-
ation and data analysis of our results is available on Zenodo [14].

2 BACKGROUND AND RELATEDWORK
Several approaches have been introduced in the literature that aim
to reproduce a given crash. Some of these techniques (e.g., ReCore
[36]) use runtime data (i.e., core dumps). However, collecting the
runtime data may induce a significant overhead and raises privacy
concerns. In contrast, other approaches [4, 6, 32, 44] only require the
stack traces of the unhandled exception causing the crash, collected
from executions logs or reported issues. For Java programs, a stack
trace includes the list of classes, methods, and code line numbers
involved in the crash. As an example, Figure 1 shows a stack trace
produced by a crash (due to a bug) in Apache Commons Lang. This
stack trace contains the type of the exception (ArrayIndexOutOf-
BoundsException) and frames (lines 1-6) indicating the stack of
active method calls during the crash.

Among the various approaches solely using a stack trace as input,
STAR [6] and BugRedux [23] use backward and forward symbolic
execution, respectively; MuCrash [44] mutates the existing test
cases of the classes involved in the stack trace; JCharming [31, 32]
applies model checking and program slicing for crash reproduc-
tion; and ConCrash [4] is designed to use pruning strategies to
reproduce the crash-reproducing test case.

EvoCrash is an evolutionary-based approach that applies a
Single-Objective Genetic Algorithm (Single-Objective Search) to
generate a crash-reproducing test case for a given stack trace and
a target frame (i.e., the class under test for which the test case is
generated). The generated test will trigger a crash with a stack
trace that is identical to the original one, up to the target frame.
For instance, for the stack trace in Figure 1 with a target frame at
line 3, EvoCrash generates a test case that reproduces the first
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three frames of this stack trace (i.e., identical from lines 0 to 3). A
previous empirical evaluation [39] shows that EvoCrash performs
better compared to other crash reproduction approaches relying on
model checking and program slicing [31, 32], backward symbolic
execution [6], or exploiting existing test cases [44]. The study also
confirms that automatically generated crash-reproducing test cases
help developers to reduce their debugging effort.

2.1 Single-Objective Search Heuristics
To evaluate the candidate tests, and consequently guide the search
process, Single-Objective Search applies a fitness function called the
Crash Distance. This fitness function contains three components:
(i) the line coverage distance, indicating the distance between
the execution trace and the target line (the line number pointed to
by the target frame), (ii) the exception type coverage, indicating
whether the target exception is thrown, and (iii) the stack trace
similarity, indicating whether all frames (from the beginning up
to the target frame) are included in the triggered stack trace.

Definition 2.1 (Crash Distance [39]). For a given test case execu-
tion t , the Crash Distance (f ) is defined as follows:

f (t) =


3 × ds (t) + 2 ×max(de ) +max(dtr ) if line not reached
3 ×min(ds ) + 2 × de (t) +max(dtr ) if line reached
3 ×min(ds ) + 2 ×min(de ) + dtr (t) if exception thrown

(1)

Where ds (t) ∈ [0, 1] indicates how far the test t is from reaching
the target line using two heuristics: approach level and branch dis-
tance [27]. The former measures the minimum number of control
dependencies between the execution path of t and the target line;
the latter indicates how far t is from satisfying the branch condition
on which the target line is control dependent. And de (t) ∈ {0, 1}
indicates whether an exception with the same type as the target ex-
ception is thrown (0) or not (1). Finally, dtr (t) ∈ [0, 1] calculates the
similarity between the stack trace produced by t and the expected
one, based on classes, methods, and line numbers appearing in both
stack traces. Functions max(.) and min(.) denote the maximum
and minimum possible values for a function, respectively. Con-
cretely, de (t) and dtr (t) are only calculated upon the satisfaction
of two constraints: exception type coverage and stack trace similarity
are relevant only when we reach the target line (first constraint)
and when we have the same type of exception (second constraint),
respectively.

2.2 Single-Objective Search
The search process starts with a guided initialization during
which an initial population of randomly generated test cases is
created. The algorithm ensures that each test case calls the tar-
get method (pointed to by the target frame) at least once. In each
generation, the fittest test cases are evolved by applying guided
mutation and guided crossover. Guided mutation applies a clas-
sical mutation to the test cases while ensuring that the mutated test
contains one or more calls to the target method. Similarly, guided
crossover is a variant of the single-point crossover that preserves
calls to the target methods in the offsprings. Accordingly, each
generated test case contains at least one call to the target method
(i.e., the method triggering the crash) [39].

With those operators, Single-Objective Search improves the ex-
ploitation, but it penalizes exploration of new areas of the search
space by not generating diverse enough test cases. As a consequence,
the search process may get stuck in local optima.

2.3 Decomposition-based Multi-objectivization
To increase diversity during the search, a prior study [38] investi-
gated the usage ofDecomposition-based Multi-Objectivization (called
De-MO hereafter) to decompose the Crash Distance in three dis-
tinct (sub-)objectives. De-MO on the Crash Distance (temporarily)
decomposes the function in three distinct (sub-)objectives: ds (t),
de (t), and dtr (t). Then, De-MO uses a multi-objective evolution-
ary algorithm optimizing three objectives to generate one crash-
reproducing solution. In the end, the global optimal solution is a
test case in the Pareto front produced by MOEAs that satisfies all of
the sub-objectives simultaneously. The empirical evaluation shows
that De-MO increases the efficiency of the crash reproduction pro-
cess for some specific cases compared to Single-Objective Search.
However, it loses efficiency in some other cases.

In particular, in Multi-objectivization, search objectives should
be conflicting to increase the diversity of generated solutions [22].
However, the three sub-objectives inDe-MO [38] are tightly coupled
and not conflicting: the stack trace similarity (dtr (t)) cannot be
computed for test case t without executing the target line (ds (t) = 0)
and throwing the correct type of exception (de (t) = 0). Also, the
type of exception (de (t)) is not relevant, while test t does not cover
the statement in the target line (ds (t) = 0.0).

3 MULTI-OBJECTIVIZATIONWITH
HELPER-OBJECTIVES (MO-HO)

Decomposing the Crash Distance leads to a set of dependent sub-
objectives, which reduces the effect of improving diversity through
multi-objectivization [22]. In this study, we focus on using new
helper-objectives in addition to the Crash Distance, rather than
decomposing it. We define two helper-objectives called method
sequence diversity and test length minimization that aim to
(i) increase diversity in the population (i.e., generated tests) and (ii)
address the bloating effect [30, 33]. Then, we use five different evo-
lutionary algorithms belonging to different categories of MOEAs
(e.g., decomposition-based and rank-based) to solve this optimiza-
tion problem. In the remainder of this section, we first discuss the
two helper-objectives. Next, we present the MOEAs used to solve
this problem.

3.1 Helper-Objectives
As suggested by Jensen et al. [22], adding helper-objectives to an
existing single objective can help search algorithms escape from
local optima. However, this requires that the helper objectives are
in conflict with the primary one [22]. Therefore, defining proper
helper-objectives is crucial.

Method Sequence Diversity. The first helper-objective seeks
to maximize the diversity of the method-call sequences that com-
pose the generated tests because more diverse tests might execute
different paths or behaviors of the target class. Notice that each test
case is a sequence of statements, where each statement belongs to
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one of the following five different categories [33]: primitive state-
ments, constructors, field statements, method calls, or assignments.
Furthermore, the length of a test case is variable, i.e., it is not fixed
a priori and can vary during the search.

In recent years, several functions have been introduced to mea-
sure test case diversity [30]. These functions measure the diversity
between two test cases by using a binary encoding function to
calculate the distance between the corresponding encoded vectors
using the Levenshtein distance [26], Hamming distance [19], etc.
For three or more test cases, the overall diversity corresponds to
the average pairwise diversity of the existing test cases [30]. These
metrics have been used in other testing tasks (e.g., automated test
selection), but not in crash reproduction.

To measure the value of this helper-objective for the generated
solutions, we follow a similar procedure. Let us assume that F =
{ f1, f2, .. fn } is a set of public and protected methods in the target
class (i.e., method calls that can be called directly by the generated
tests), and T = {t1, t2, ..tm } is a set of generated test cases. To
calculate the diversity of T , we first need to encode each tk ∈ T
into a binary vector. We use the same encoding function proposed
by Mondal et al. [30]: each test case tk ∈ T corresponds to a binary
vector vk of length n (i.e., the number of public and protected
methods in the target class). Each elementvk [i] of the binary vector
denotes whether the corresponding method fi ∈ F is invoked
by the test case tk . More formally, for each method fi ∈ F , the
corresponding entry vk [i] = 1 if tk calls fi ; vk [i] = 0 otherwise.

Then, we calculate the diversity for each pair of test cases tk
and ti as the Hamming distance between the corresponding binary
vectorsvk andvi [19]. The Hamming distance (Hamming) between
two vectors corresponds to the number of mismatches1 over the to-
tal length of the binary vectors. For instance, the Hamming distance
between A = ⟨1, 1, 0, 1, 0⟩ and B = ⟨0, 1, 0, 1, 1⟩ equals to 2/5 = 0.4.

Definition 3.1 (Method Sequence Diversity). Given an encoding
function V (.), the method sequence diversity (MSD) of a test t ∈ T
corresponds to the average Hamming distance of that test from the
other test cases in T :

MSD(t) =

∑
ti ∈T \{t } Hamminд(V (t),V (ti ))

|T | − 1
(2)

In our approach, MSD should be maximized to increase the
chance of the generated test to execute new paths or behaviors in
the target class. Since our tool (see Section 4.1) is designed for mini-
mization problems, we minimize the method sequence similarity
using the formula:

fMSD (t) = 1 −MSD(t) (3)

Test LengthMinimizationWhile increasing method sequence
diversity can help to execute diverse paths of the target class, a
previous study [1] also showed that test diversity metrics (such as
call sequence diversity) can reduce coverage. This is due to the
bloating effect, i.e., diversity will also promote larger test cases over
short ones. Let us assume that we have a set of short test cases
with few method calls in our population (most of the elements in
their binary vectors are 0). A lengthy test case tL that calls all the
methods of the target class will have a binary vector containing

1The number of positions at which the corresponding bits are different.

only 1 values. As a consequence, tL will have a large Hamming
distance from the existing test cases.

Larger tests introduce two potential issues: (i) they are likely
more expensive to run (extra overhead), and (ii) they may contain
spurious statements that do not help code coverage (which is a
part of Crash Distance). In the latter case, mutation can become
less effective as it may mutate spurious statements rather than
the relevant part of the chromosomes. Therefore, test diversity is
in conflict with Crash Distance. To avoid the bloating effect, our
second helper-objective is test length minimization, which counts
the number of statements in a given test:

Definition 3.2 (Test Length Minimization). For a test case t with a
length |t |, the fitness function is:

flen (t) = |t | (4)

3.2 Multi-Objective Evolutionary Algorithms
In this study, our goal is to solve a multi-objectivized problem by
minimizing the three objective functions (Crash Distance, fMSD ,
and flen ). In theory, we could consider various MOEAs, each com-
ing with different advantages and disadvantages over different
optimization problems (e.g., multimodal, convex, etc.). However,
we cannot establish upfront what type of MOEA works better for
crash reproduction as the shape of the Pareto Front (i.e., type of
problem) for crash reproduction is unknown. Hence, we chose five
MOEAs from different categories to determine the best algorithm
for MO-HO: NSGA-II uses the non-dominated sorting procedure;
SPEA2 is an archive-based algorithm that selects the best solutions
according to the fitness value; PESA-II divides the objective space
to hyper-boxes and selects the solutions from the hyper-boxes with
the lower density; MOEA/D decomposes the problem to multiple
sub-problems; and FEMO, is a (1+1) evolutionary algorithm that
evolves tests solely with mutation and without crossover.

We use the same stopping conditions for all search algorithms,
which is a maximum search budget, or when the target crash is
successfully reproduced, i.e., a solution with a Crash Distance of
0.0 is found. Also, to increase exploitation during the search, all
algorithms use the guided crossover and guided mutation operators.

In the following subsections, we briefly describe the selected
search algorithms and their core characteristics.

3.2.1 Non-dominated Sorting Genetic Algorithm II (NSGA-II) [10].
In NSGA-II, offspring tests are generated, from given a population
of size N , using genetic operators (crossover and mutation). Next,
NSGA-II unions the offspring populationwith the parent population
into a set of size 2N and applies a non-dominated sorting to select
the N individuals for the next generation. This sorting is performed
based on the dominance relation and crowding distance: the solutions
are sorted into subsequent dominance fronts. The non-dominated
solutions are in the first front (Front0). These solutions have a
higher chance of being selected. Furthermore, crowding distance is
used to raise the chance of the most diverse solutions within the
same front to be selected for the next generation. In each generation,
parent test cases are selected for reproduction using the binary
tournament selection.

3.2.2 Strength Pareto Evolutionary Algorithm 2 (SPEA2) [47]. Be-
sides the current population, SPEA2 contains an external archive
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that collects the non-dominated solutions among all of the solutions
considered during the search process. SPEA2 assigns a fitness value
to each solution (test) in the archive. The fitness value of solution i
is calculated by summing up two values: Raw fitness (R(i) ∈ N0),
which represents the dominance relation of i; and Strength value
(S(i) ∈ [0, 1]), which estimates the density of solutions in the same
Pareto front (solutions that are not dominating each other). A solu-
tion with lower fitness value is “better” and has a higher chance of
being selected. For instance, the non-dominated solutions have a
R(i) = 0, and their fitness values are lower than 1.

The external archive has a fixed size, which is given at the be-
ginning of the search process. After updating the archive in each
iteration, the algorithm checks if the size of the archive exceeds this
given size. If the size of the archive is smaller than the given size,
SPEA2 fills the archive with the existing dominated solutions. In
contrast, if the size of the archive is bigger than the given size, this
algorithm uses a truncation operator to remove the solutions with
a high fitness value from the archive. After updating the archive,
SPEA2 applies binary tournament selection based on the calculated
fitness values, selects parent solutions, and generates offspring so-
lutions via crossover and mutation.

3.2.3 Pareto Envelop-based Selection Algorithm (PESA-II) [8]. Sim-
ilar to SPEA2, PESA-II benefits from an external archive. In each
generation, the archive is updated by storing the non-dominated
solutions in the archive and the current population. However, the
difference is in the selection strategy and archive truncation. In
this algorithm, instead of assigning a fitness value to each of the
solutions in the archive, the objective space is divided, based on
the existing solutions, into hyper-boxes or grids. Non-dominated
solutions in a hyper-box with lower density have a higher chance
of being selected and a lower chance of being removed.

3.2.4 Multi-objective Evolutionary Algorithm Based on Decomposi-
tion (MOEA/D) [46]. This algorithm decomposes the M-objectives
problem into K single-objective sub-problems and optimizes them
simultaneously. Each sub-problem has different weights for the
optimization objectives. The K sub-problems д(x |w1), . . . , д(x |wK )

are obtained using a scalarization function д(x |w) and a set of
uniformly-distributed weight vectorsW = {w1, . . . ,wk }. The de-
composition can be done with several techniques such as weighted
sum [29], Tchebycheff [29], or Boundary Intersection [9, 28]. In each
generation, MOEA/D maintains the best individuals for each sub-
problem д(x |wi ), while the reproduction (based on crossover and
mutation) is allowed only among solutions (tests) within the same
neighbourhood (mating restriction).

3.2.5 Fair Evolutionary Multi-objective Optimizer (FEMO) [25].
This algorithm is a local (1+1) evolutionary algorithm. It means
that in each iteration, only one solution is evolved by the mutation
operator to have only one offspring solution for the next generation.
FEMO contains an archive. In the first iteration, it generates a
random solution and places it in the archive. In the next generations,
it selects one individual from the archive and evolves it by mutation
operator to generate a new solution. Finally, if the new solution
dominates at least one of the solutions in the archive, it adds the
new solution to the archive and removes the dominated solutions.

Each solution in the archive has a weight (w) that indicates the
number of times that a solution was selected from the archive. So,
the initial weight of a newly generated test case is 0. During the
selection, FEMO selects a solution randomly from the solutions in
the archive that have the lowestw .

4 EMPIRICAL EVALUATION
To assess the impact of MO-HO on crash reproduction, we per-
formed an empirical evaluation and answered the following re-
search questions.

RQ1: Which Multi-Objective algorithm performs better with MO-
HO’s search objectives in terms of crash reproduction?

RQ2: What is the impact of the MO-HO algortihm on crash re-
production compared to Single-Objective Search and De-MO?

RQ3: How does MO-HO’s efficiency compare to Single-Objective
Search and De-MO?

4.1 Implementation
Since other crash reproduction approaches are not openly available,
we implemented a new open-source evolutionary-based crash re-
production framework, called Botsing.2 Botsing is well-tested and
designed to be easily extensible for new techniques (new evolution-
ary algorithms, new genetic operators, etc.). It relies on EvoSuite
[17], an evolutionary-based unit test generation tool, for code in-
strumentation and for the internal representation of an individual
(i.e., a test case) by using evosuite-client as a dependency.

For this study, we implemented the techniques used in previous
studies for crash reproduction (Single-Objective Search and De-
MO) in Botsing. Moreover, we implemented all of the MO-HO
approaches, which include the two fitness functions for our new
helper-objectives (method sequence diversity and test length) and
the five MOEAs mentioned above.

4.2 Setup
Crash Selection. We selected our crashes from JCrashPack [11,
37], a collection of crashes from open-source projects and created
for crash reproduction benchmarking. Based on the reported results
of the prior studies about search-based crash reproduction [37, 38],
we know that Single-Objective Search and De-MO face various
challenges to reproduce many of the crashes in this benchmark. For
this study, we apply our approach and state-of-the-art algorithms
to 124 crashes from JCrashPack, which are used in the recent
search-based crash reproduction study [12]. These crashes stem
from six open-source projects: JFreeChart, a framework for building
interactive charts; Commons-lang, a library providing extra utilities
to the java.lang API; Commons-math, a library for mathematical
and statistical usages; Mockito, a testing framework for mocking
objects; Joda-time, a library for date and time manipulation; XWiki,
a large-scale enterprise wiki management system.

Algorithm Selection. We attempted to reproduce the selected
crashes using seven evolutionary algorithms: Single-Objective Sear-
ch,De-MO, andMO-HOwith fiveMOEAs (NSGA-II, SPEA2, PESA-II,
MOEA/D, and FEMO). For each crash, we ran each algorithm on
each frame of crash stack traces. We repeated each execution 30
times to take randomness into account, for a total number of 199,710
2Available at https://github.com/STAMP-project/botsing



ASE ’20, September 21–25, 2020, Virtual Event, Australia Pouria Derakhshanfar, Xavier Devroey, Andy Zaidman, Arie van Deursen, and Annibale Panichella

independent executions. We ran the evaluation on servers with 40
CPU-cores, 128 GB memory, and 6 TB hard drive.

Evaluation procedure. In RQ1, we perform an internal assess-
ment of MO-HO by comparing all MOEAs to determine the best-
performing one when optimizing the search objectives in MO-HO.
Then, to answer RQ2 and RQ3, we use the best-performing MO-HO
configuration (MOEA) to evaluate its effectiveness and efficiency
against the state-of-the-art crash reproduction approaches.

Parameter Settings. We set the search budget to five minutes,
as suggested by previous studies on evolutionary-based crash re-
production [39]. Also, we fixed the population size and archive size
(if needed) to 50 individuals, as recommended in prior studies on
test case generation [33]. For MO-HO with PESA-II, the number of
bisections for gridding is set to the default value of five grids. InMO-
HO with MOEA/D, the weight vectors are obtained using a variant
simplex-lattice design [40] and using the Tchebycheff approach as
the aggregation function. Finally, we set the neighborhood selection
probability to 0.2 (set to the default value [15]) and the maximum
number of solutions that can be replaced in each generation to 50.
For all MOEAs, we use the guided mutation with mutation probabil-
ity pm = 1/n (n is the length of the test case), and guided crossover
with crossover probability pc = 0.8 (the same parameters used for
the suggested baselines).

4.3 Data Analysis
To evaluate the crash reproduction ratio (i.e., the percentage of
successful crash reproduction attempts in 30 rounds of runs) of
different algorithms, we follow the same procedure as the previous
studies [12, 38]: for each crashC , we find the highest frame that can
be reproduced by at least one of the algorithms (rmax ). We analyze
the crash reproduction ratio of each algorithm for a target crash C
targeting frame rmax .

To check whether the performance (reproduction ratio) of MO-
EAs significantly differs from one another, we use the Friedman
test [18]. The Friedman test is a non-parametric version of the
ANOVA test [16], i.e., it does not make any assumption about the
data distribution. It is a multiple-problem statistical test and has
been widely used in the literature to compare randomized algo-
rithms [21, 34]. Friedman’s test allows to rank and statistically
compare different MOEAs over multiple independent problems, i.e.,
crashes in our case. For Friedman’s test, we use a level of signifi-
cance α = 0.05. If the p-values obtained from Friedman’s test are
significant (p-values <= 0.05), we apply pairwise multiple com-
parison using Conover’s post-hoc procedure [7]. To correct for
multiple comparison errors, we adjust the p-values from Conover’s
procedure using Holm-Bonferroni [20].

To answer RQ2, we need to determine whether an algorithm
reproduces a crash. Since we repeat each execution 30 times, we
use the majority of outcomes for a crash reproduction result. In
other words, if an algorithm could reproduce a crash in ≥ 15 runs
(i.e., reproduction ratio of ≥ 50%), we count that frame as reproduced.

To compare the number of reproduced crashes by each algorithm,
we used the same procedure used by Almasi et al. [2] and Campos
et al. [5]: we check crash reproduction status and reproduction ratio
of the best-performing MO-HO algorithm (according to the results

Table 1: MOEAs ranking (inMO-HO) in terms of crash repro-
duction ratio (Friedman’s test) and results of the pairwise
comparison (p-value ≤ 0.05)

Rank MOEA Rank value Significantly better than
1 SPEA2 2.63 (2), (3), (4), (5)
2 PESA-II 2.86 (4), (5)
3 NSGA-II 2.90 (4), (5)
4 MOEAD 4.97 (5)
5 FEMO 5.05

of RQ1), Single-Objective Search, and De-MO at five time intervals:
1, 2, 3, 4 and 5 minute.

To evaluate the efficiency of the algorithms (RQ3), we analyze
the time spent by the bestMO-HO algorithm, Single-Objective Sear-
ch, and De-MO for generating a crash reproducing test cases. Since
efficiency is only applicable to the reproduced crashes, we compare
the efficiency of algorithms on the crashes that are reproduced
at least once by one of the algorithms. If, for one execution, an
algorithm was not able to reproduce the crash, it means that it
consumed the maximum allowed time budget (5 minutes). To assess
the effect size of differences between algorithms, we use the Vargha-
Delaney Â12 statistic [41]. A value of Â12 < 0.5 for a pair of factors
(A,B) shows that A reproduced the target crash in a shorter time,
while a value of Â12 > 0.5 indicates the opposite. Besides, Â12 = 0.5
means that there is no difference between the factors. To evaluate
the significance of effect sizes (Â12), we use the non-parametric
Wilcoxon Rank Sum test, with α = 0.05 for the Type I error.

A replication package of our evaluation is available on Zenodo
[14]. It contains the selected crashes, the results and data analysis
presented in this paper, as well as the implementation of MOEAs
in Botsing and a Docker-based infrastructure to enable the full-
replication of our evaluation.

5 RESULTS
This section presents the results of our empirical evaluation and
answers, one by one, our research questions.

5.1 Best MOEA for MO-HO (RQ1)
Figure 2 presents the crash reproduction ratio of theMOEAs applied
to ourMO-HO framework. For this analysis, we consider the number
of times (in percentage) each MOEAs could reproduce a given
crash across 30 runs and using a search budget of five minutes. On
average (the squares in Figure 2), the best algorithm for MO-HO is
SPEA2, with an average and median of 76% and 100% of successful
reproductions, respectively. SPEA2 is Followed by PESA-II, NSGA-II,
and MOEAD. Also, this figure shows that the first quartile of the
crash reproduction ratio of SPEA2 is, at least, about 25% higher than
other MOEAs.

According to Friedman’s test, the differences in reproduction
ratios are statistically significant (p-value ≤ 0.05). This means that
some MOEAs are significantly better than others within our MO-
HO framework. For completeness, Table 1 reports the ranking pro-
duced by the Friedman test. To better understand for which pairs
of MOEAS the statistical significance holds, we applied the post-
hoc Conover’s procedure for the pairwise comparison. The results
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Figure 2: Crash reproduction ratio (out of 30 executions) of
MO-HO algorithms. The upper and lower edge of each box
present the upper and lower quartile, respectively. (□) de-
notes the arithmetic mean and (—) is the median.

of the comparison are also reported in Table 1. According to this
table, the best-performing algorithm is MO-HO + SPEA2, which
has a significantly higher crash reproduction ratio compared to
other MO-HO algorithms. The next algorithms are MO-HO + PESA-
II and MO-HO + NSGA-II. These two algorithms are significantly
better than MO-HO + MOEAD and MO-HO + FEMO. Finally, the
worst algorithm in terms of crash reproduction is FEMO, which is
significantly worse than other MOEAs.

Summary (RQ1). MO-HO + SPEA2 achieved the highest perfor-
mance in terms of crash reproduction ratio compared to MO-HO +
other MOEAs. The next best-performing MOEAs, in terms of crash
reproduction, are PESA-II and NSGA-II.

5.2 Crash Reproduction (RQ2)
Figure 3 depicts the crash reproduction ratio of the best-performing
MO-HO configuration (i.e., with SPEA2), Single-Objective Search,
and De-MO at five time intervals (search budgets). As indicated
in this figure, the average crash reproduction ratio of MO-HO is
higher than other algorithms at all of the time intervals. Also, the
median crash reproduction ratio for this algorithm is always 100%.
Furthermore, the maximum improvement achieved byMO-HO with
the five-minutes search budget is in XWIKI-14599 (with 100% im-
provement) and MATH-3b (with 93.3% improvement) compared
to Single-Objective Search and De-MO, respectively. In contrast,
the largest reduction in reproduction ratio by MO-HO (with the
five-minutes budget) is in XCOMMONS-1057 (with 30% drop) and
XWIKI-13616 (with 40% reduction) compared to Single-Objective
Search and De-MO, respectively. We will explain the negative fac-
tors in MO-HO, which lead to negative results for this algorithm in
some corner cases, in Section 5.4.

Moreover, we can see that De-MO is the second-best algorithm
in all of the time intervals. In the first 60 seconds of the crash
reproduction process, on average, its crash reproduction ratio is 4%
better than Single-Objective Search. However, in contrast to the
other two algorithms, the crash reproduction ratio of this algorithm
changes only slightly after the first 120 seconds. Hence, at the end of
the search process, the average crash reproduction ratio of De-MO
is only 2% better than Single-Objective Search. In contrast, since
the crash reproduction ratio of MO-HO keeps growing, on average,

it remains more effective than Single-Objective Search (about 10%)
even after 300 seconds. The other interesting point in Figure 3 is
the first quantile of MO-HO. In the first 60 seconds, this value is
lower than 12%, but it grows up to 62% after 300 seconds. This
improvement is not observable in state-of-the-art algorithms.

Furthermore, MO-HO is more stable in crash reproduction after
300 seconds budget compared to the other algorithms. Figure 3
demonstrates that the interquartile range (i.e., the difference be-
tween first and third quartile) of crash reproduction ratio inMO-HO
with the 300 seconds budget is 46% smaller than the interquartile
range of other algorithms (being 38.3% forMO-HO, 76.6%. for Single-
Objective Search, and 70.8% for De-MO).

Also, Figure 4 shows the number of crashes, which are repro-
duced by MO-HO, but not by the state-of-the-art algorithms and
vice versa in different time intervals. As indicated in this figure, in
all of the time intervals, the number of crashes that are reproduced
by MO-HO is higher than the crashes that it cannot reproduce. In
the best case (after 1 minute of search), MO-HO reproduces eight
and seven new crashes that cannot be reproduced by Single-Ob-
jective Search and De-MO, respectively. In contrast, there is only
one crash that can be reproduced by De-MO and not by MO-HO.
Also, after five minutes, MO-HO still reproduces more crashes than
the baselines: it reproduces five and six new crashes that cannot be
reproduced by Single-Objective Search and De-MO, respectively.

The crashes that are reproduced byMO-HO after fiveminutes but
not by Single-Objective Search are: TIME-10b frame 5, XCOMMONS-
928 frame 2, XWIKI-14227 frame 2, XWIKI-14475 frame 1, and
XWIKI-14599 frame 1. And the crashes that are reproduced byMO-
HO after five minutes but not by De-MO are: MOCKITO-16b frame
4, TIME-5b frame 3, XWIKI-13377 frame 3, XWIKI-14227 frame 2,
MATH-3b frame 1, and MOCKITO-10b frame 1.

Figure 5 shows the crash’s stack trace reported in the issue
XWIKI-14227. MO-HO is the only approach that can reproduce
the first two frames of this stack trace. Here, the target method
is useMainStore (Figure 6), which does not have any input argu-
ment. Hence, to reproduce this crash, the crash reproducing test
generated by MO-HO (depicted in Figure 8) should invoke specific
methods (e.g., setWiki, setWikiId) to set different local variables
in the xwikiContext0 object, and then, pass this object to the class
under test (here, ActivityStreamConfiguration). Since the crash
reproducing test case generated by MO-HO does not add any plu-
gin to the xWiki0 object, the execution of this test indeed leads to
a NullPointerException thrown at line 5619 of the getPlugin
method in Figure 7. Generating such a specific test case requires a
search process with high exploration ability, which can generate
diverse test cases.

We do note that Single-Objective Search cannot even generate a
test case covering the target line (line 85 of the useMainStore
method). However, De-MO can cover the target line thanks to
more test generation diversity delivered by the application of multi-
objectivization.

Moreover, Single-Objective Search and De-MO reproduces two
crashes that cannot be reproduced by MO-HO after five minutes.
We will analyze these corner cases later in Section 5.4.

In addition, after five minutes of crash reproduction, De-MO
reproduced six crashes, which are not reproduced by Single-Ob-
jective Search. Still, there are more crashes (seven) that can be
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Figure 3: Crash reproduction ratio (out of 30 executions) ofMO-HO against state-of-the-art in five different time intervals. (□)
denotes the arithmetic mean and (—) is the median.
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0 java.lang.NullPointerException: null

1 at [...]. XWiki.getPlugin(XWiki.java :5619)

2 at [...]. ActivityStreamConfiguration.useMainStore ([...]:85)

3 [...]

Figure 5: XWIKI-14227 crash’s stack trace [37].

82 public boolean useMainS tore ( ) {
83 XWikiContext c on t e x t = c o n t e x t P r o v i d e r . g e t ( ) ;
84 i f ( c on t e x t . i sMainWiki ( ) ) { return fa l s e ; }
85 A c t i v i t y S t r e amP l u g i n p l ug i n = (

A c t i v i t y S t r e amP l u g i n ) c on t e x t . ge tWik i ( ) .
g e t P l u g i n [ . . . ] c on t e x t ) ; / / <−− t a r g e t l i n e

86 }

Figure 6: Method useMainStore appears in the second frame
of the XWIKI-14227 crash’s stack trace.

reproduced by Single-Objective Search but not by De-MO. This
result shows that despite the new crashes reproduced by De-MO,
this algorithm was counter-productive with respect to the total
number of reproduced crashes.

5617 public XWik i P l u g i n I n t e r f a c e g e t P l u g i n ( [ . . . ] ) {
5618 XWikiPluginManager p l u g i n s = ge tP lug inManager ( ) ;
5619 Vector < S t r i ng > p l u g i n l i s t = p l u g i n s . g e t P l u g i n s ( ) ;
5620 [ . . . ]
5621 }

Figure 7: Method getPlugin appears in the first frame of the
XWIKI-14227 crash’s stack trace.

1 public void t e s t 0 ( ) throws Throwable {
2 A c t i v i t y S t r e amCon f i g u r a t i o n ac0 = new

Ac t i v i t y S t r e amCon f i g u r a t i o n ( ) ;
3 XWikiContext xWikiContext0 = new XWikiContext ( ) ;
4 XWiki xWiki0 = new XWiki ( ) ;
5 xWikiContext0 . s e tWik i ( xWiki0 ) ;
6 xWikiContext0 . s e tW ik i I d ( " 4~ YR l f I > .U { i b " ) ;
7 P rov ide r <XWikiContext > p r o v i d e r 0 = ( P rov ide r <

XWikiContext > ) mock ( [ . . . ] ) ;
8 doReturn ( xWikiContext0 ) . when ( p r o v i d e r 0 ) . g e t ( ) ;
9 I n j e c t o r . i n j e c t ( ac0 , [ . . . ] , " c o n t e x t P r o v i d e r " , (

Ob j e c t ) p r o v i d e r 0 ) ;
10
11 / / Und e c l a r e d e x c e p t i o n !
12 ac0 . useMa inS tore ( ) ;
13 }

Figure 8: Crash-reproducing test case generated by MO-HO
for the XWIKI-14227 crash.

Summary (RQ2). On average, MO-HO has the highest crash
reproduction ratio independently from the search budgets.

5.3 Efficiency (RQ3)
Figure 9 shows the time (in seconds) needed by theMO-HO and the
state-of-the-art algorithms to successfully reproduce the crashes in
our benchmark. On average, the fastest algorithm is MO-HO, with
an average search time of 71 seconds per crash replication. The
median of its running time is lower than 10 seconds. The second
fastest algorithm is De-MO that, on average, uses 84 seconds to
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Figure 9: Overall budget consumption in seconds (log. scale).
(□) denotes the arithmetic mean and (—) is the median.

Table 2: Pairwise comparison of the budget consumption
with a small (S), medium (M), and large (L) effect size Â12 <
0.5 and a statistical significance < 0.05.

#(Â12 < 0.5) Single De-MO MO-HO
L M S L M S L M S

Single - - - 7 - 4 1 - 2
De-MO 13 7 2 - - - 3 2 -
MO-HO 35 6 2 33 10 4 - - -

reproduce the crashes. The slowest algorithm is Single-Objective
Search, which demands, on average, about 100 seconds.

Moreover, the biggest improvements achieved by MO-HO in
terms of efficiency are for XWIKI-14599, in which MO-HO requires
only 3% of the time required by Single-Objective Search to achieve
crash reproduction, and MATH-3b, in which MO-HO requires only
7% of the time required by De-MO to finish the crash reproduction
task. However, the biggest efficiency losses byMO-HO are inMATH-
81b with 45 seconds drop (15% of time budget) and XRENDERING-
481 with 145 seconds drop (48% of time budget) compared to Single-
Objective Search and De-MO, respectively.

Table 2 compares the budget consumption of the algorithms from
a statistical point of view, i.e., according to the effect sizes (Â12 <
0.5) and statistical significance (p-value < 0.5). According to this
table, MO-HO is the fastest algorithm: it significantly reproduced
43 (34.6% of crashes) and 47 (37.9% of crashes) crashes faster than
Single-Objective Search and De-MO, respectively. Most of these
significant improvements have large effect sizes (35 against Single-
Objective Search and 33 against De-MO). In cases that MO-HO
improves efficiency, on average, this algorithm decreases the time
required for crash reproduction by 47% and 58% compared toDe-MO
and Single-Objective Search, respectively.

Furthermore, Table 2 shows a few cases, in which MO-HO in-
creases the consumed time compared to the state-of-the-art: 3
against Single-Objective Search and 5 against De-MO. In most of
these cases (7 out of 8), the crash reproduction process needs to
reproduce a crash with only one frame. Even the exceptional case
is a stack trace with three frames. In contrast, in cases that MO-HO
wins, we have many crashes with more frames (six frames, for
instance). Also, this table shows that De-MO is significantly slower
than Single-Objective Search in 11 crashes. Meanwhile, MO-HO is

0 java.lang.ArrayIndexOutOfBoundsException: 2

1 at org.apache.commons.math.linear.BigMatrixImpl.operate(

BigMatrixImpl.java :997)

Figure 10: MATH-98b crash’s stack trace [24, 37].

991 public BigDec imal [ ] op e r a t e ( B igDec imal [ ] v ) {
992 f ina l int nRows = th i s . getRowDimension ( ) ;
993 f ina l int nCols = th i s . getColumnDimension ( ) ;
994 f ina l BigDec imal [ ] out = new BigDec imal [ v . l e ng t h ] ;
995 for ( in t row = 0 ; row < nRows ; row++) {
996 . . .
997 out [ row ] = sum ; / / <−− t a r g e t l i n e
998 }
999 . . .
1000 }

Figure 11: Method operate appears in the first frame of the
MATH-98b crash’s stack trace [24, 37].

only slow in reproducing three crashes. Hence, our proposed algo-
rithm reduces the cases in which the multi-objectivization search
process is slower than the single objective search by 73%.

Summary (RQ3). The fastest crash reproduction algorithm is
MO-HO with an average improvement in running time in 34.6% of
the crashes compared to the state of the art.

5.4 Corner cases analysis
Despite the notable improvements achieved by MO-HO, there are
few specific cases, in which Single-Objective Search or De-MO
outperform MO-HO. For instance, in Section 5.2, Single-Objective
Search and De-MO reproduce two crashes that are not reproduced
by MO-HO. Also, we observed in Section 5.3 that the efficiency of
these two algorithms is higher than MO-HO in 8 crashes.

To understand whyMO-HO is counter-productive in a few cases,
we performed a manual analysis to analyze the factors in MO-
HO that negatively impact the crash reproduction process. Re-
sults of our analysis point to two adverse factors: extra overhead
in calculating the objectives (fitness evaluation) and helper-
objectives misguidance.

Extra calculation in fitness evaluation. In some cases, crash
reproduction is trivial, and the search process reproduces it in a
few seconds. For instance, in TIME-8b [24, 37], Single-Objective
Search and De-MO reproduce the crash in about a second. The time
required by MO-HO to reproduce this crash is three seconds (3
times more). This stems from the fact that fitness function evalua-
tion in MO-HO is more time-consuming than the state-of-the-art:
Single-Objective Search and De-MO need to calculate only the crash
distance for each test case evaluation, whileMO-HO needs to calcu-
late the call diversity, as well. This extra calculation lengthens the
search process by a couple of seconds. In these cases, the increased
crash reproduction time is lower than 5 seconds, and it is negligible
in practice.

Helper-objectives misguidance. In some other cases, the sce-
nario, which leads to crash reproduction, needs a simple sequence
of methods calls to the target class. Still, the complexity of this
scenario stems from the input arguments used for the method calls.
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In these cases, since crash reproduction does not need the call di-
versity, method sequence diversity objective misguides the search
process. Alternatively, we need another objective for method input
argument diversity (i.e., improves the diversity of the input argu-
ments for method calls). Adding new helper-objectives to consider
other aspects of diversity is part of our future agenda.

As an example, let us analyze MATH-98b (Figure 10), in which
MO-HO doubled the time consumed by the crash reproduction
search process against state-of-the-art. This crash concerns an
ArrayIndexOutOfBoundsException . Also, this crash has only one
frame. For reproducing this crash, the generated test case needs
to instantiate a class called BigMatrixImpl and call a method
named operate (Figure 11) with precise input values. Method
getColumnDimension used in operate returns the number of rows
in the data variable, which has been set in the constructor. To re-
produce this crash, the generated test case should pass an array
with a size smaller than the passed size to the constructor. In this
case, method argument diversity could help the search process, and
the method call diversity is not helpful.

6 DISCUSSION
6.1 Effectiveness and applicability
Generally, De-MO reproduces some crashes that cannot be repro-
duced by Single-Objective Search due to its improved exploration
ability, resulting from the multi-objectivization of the crash dis-
tance. However, since the decomposed objectives in this approach
depend on one another (e.g., the stack trace similarity is not helpful
if the generated test does not throw the given type of exception),
they may misguide the search process in various cases. For instance,
as we saw in Section 5.2, Single-Objective Search reproduces six
crashes that are not reproducible by De-MO.

In contrast,MO-HO has three conflicting search objectives. From
the theory [22], the objective function must be conflicting to in-
crease the overall exploration ability. Our results confirm the theory:
the chance of the search process getting trapped in a local optimum
is lower by using MO-HO objectives compared to the ones used
in De-MO. As we observed in Section 5.2, after 1 minute of search,
MO-HO reproduces 8 and 7 crashes more than Single-Objective
Search and De-MO, respectively. Also, it continues outperforming
with larger search budgets (2, 3, 4, and 5 minutes) until the end
of the search process. It reproduces 5 and 6 crashes more than
Single-Objective Search and De-MO, respectively, while it cannot
reproduce only two crashes, reproduced by the other algorithms.

Note that reproducing each crash needs a particular test case
which drives the software under test to a particular state, and then, it
calls amethodwith proper input variables. To achieve this goal, each
crash reproducing test case needs to createmultiple complex objects.
Hence, reproducing five new crashes (4% of crashes available in our
benchmark) is a significant improvement for MO-HO.

6.2 Factors in the benchmark crashes that
impact the Success ofMO-HO

There are multiple factors/characteristics of the crashes in our
benchmark that might impact the performance of our approach
positively. We identify the following relevant factors: (1) the type
of the exception (e.g., null pointer exception), (2) the size the stack

frames, (3) the number of classes involved in the crashes, (4) the
number of methods of the deepest class in the crash stack. To
verify whether these factors influence the performance of our algo-
rithm, we used the two-way permutation test [35]. The permutation
test is a well-established non-parametric to assess the significance
of factor interactions in multi-factorial analysis of variance (non-
parametric ANOVA). We use a significance level alpha=0.05 and a
very large number of iterations (1,000,000) to ensure the stability
of the results over multiple executions of the procedure [35].

For the sake of our analysis, we considered the difference in
crash reproduction rate between MO-HO and the baselines as the
dependent variable, while the co-factors are our independent vari-
ables. According to the permutation test, the type of exception (p-
value=0.006) and the number of crash stack frames (p-value=0.001)
significantly impact the performance ofMO-HO compared to Single
Objective Search.We can also observe similar results when consider-
ing the improvements ofMO-HO against De-MO: p-values=< 10−12
for both exception type and the number of frames). In other words,
there are certain types of exceptions and stack trace sizes for which
MO-HO is statistically better than the state-of-the-art approaches.

From a deeper analysis, we observe that for NullPointerExcep-
tion and org.joda.time.IllegalFieldValueException,MO-HO
achieves a higher reproduction ratio than Single Objective Search
when the stack traces contain up to three frames for NPE (+22% in
reproduction rate) and up to five frames for IllegalFieldValueEx-
ception (+50% in reproduction rate). Instead, for stack traces with
more frames, the differences in reproduction ratio are negligible
(±1% on average) or negative (-10% in reproduction ratio). Besides,
MO-HO achieves better reproduction ratios for the following ex-
ceptions independently of the stack size: XWikiExceptions (+23%
on average), UnsupportedOperationException (+6% on average),
MathRuntimeException (+14% on average).

Finally,MO-HO outperformsDe-MOwhen reproducing NullPoin-
terExceptionwith 1-3 frames (+8% on average), ClassCastExcep-
tion (+8% on average), StringOutOfBoundsException (+18%with
more than 2 frames, on average), IllegalFieldException (+8%
on average), UnsupportedOperationException (+23% on aver-
age), MockitoException (+83% for short traces, on average), and
MissingMethodInvocation (+80% on average).

6.3 Crash reproduction cost
In this study, we observed that sinceMO-HO increases the diversity
of the generated test cases, it can dramatically improve the efficiency
of crash reproduction. This algorithm significantly improved the
speed of the search process in more than 36% of crashes compared
to Single-Objective Search and De-MO. In cases in which MO-HO
had a significant impact, it improves the crash reproduction speed
by more than 47%.

The prior studies on search-based crash reproduction [37, 38]
suggested 5 minutes as the search budget because the search pro-
cess cannot reproduce more after 5 minutes. However, we observed
that despite the high efficiency ofMO-HO, this algorithm continues
to reproduce more crashes in the second half of the time budget.
Section 5.2 shows that MO-HO keeps increasing the crash repro-
duction ratio even in the last minutes of the search process, while
the previous multi-objectivization approach (De-MO) changes only
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slightly after the first 2 minutes of crash reproduction. Hence, in-
creasing the search budget for MO-HO can lead to a higher crash
reproduction ratio.

6.4 Extendability
The improvement achieved by the proposed helper-objectives shows
the impact of suitable objectives on increasing the diversity of the
generated test cases and result in improving the effectiveness and
efficiency of the crash reproduction search process. Hence, we
hypothesize that this approach can be extended by adding new
relevant helper-objectives.

7 THREATS TO VALIDITY
Internal validity.We cannot ensure that our implementation of
Botsing is without bugs. However, we mitigated this threat by test-
ing our tool andmanually analyzing some samples of the results.We
used a previously defined benchmark for crash reproduction, which
contains 124 non-trivial crashes from six open-source projects and
applications. Moreover, we explained how we parametrized the
evolutionary algorithms in Section 4.2. We used the default values
of these algorithms in the other open-source implementations like
EvoSuite and JMetal. The effect of these values for crash repro-
duction is part of our future work. Finally, to take the randomness
of the search process into account, we followed the guidelines of
the related literature [3] and executed each evolutionary crash
reproduction algorithm for 30 times.

External validity. We report our results for only 124 crashes
introduced by JCrashPack [37], which is an open-source crash
reproduction benchmark collected from six open-source projects.
However, we recall here that we cannot guarantee that our results
are generalizable to all crashes. Evaluation MO-HO on a larger
benchmark from more projects is part of our future work.

Reproducibility.We provide Botsing as an open-source pub-
licly available tool. Also, the data and the processing scripts used
to present the results of this paper, including the subjects of our
evaluation (inputs), the evolution of the best fitness function value
in each generation of each execution, and the produced test cases
(outputs), are openly available as a docker image [14].

8 CONCLUSION AND FUTUREWORK
Crash reproduction can ease the process of debugging for devel-
opers. Evolutionary approaches have been successfully used to
automate this process. Existing evolutionary-based approaches use
one single objective (i.e., Crash Distance) to guide the search and
rely on guided genetic operators. Later strategies applied multi-
objectivization via decomposition (De-MO) in an attempt to improve
diversity (and, therefore, exploration). However, the latter strategy
may misguide the search process because the sub-objectives are
not strongly conflicting.

In this study, we apply a new approach calledMulti-Objectivizati-
on using Helper-Objectives (MO-HO) to tackle the problems of the
former techniques. In MO-HO, multi-objectivization is performed
by adding two helper-objectives that are in conflict with Crash Dis-
tance. We evaluated MO-HO with five MOEAs, which are selected
from different categories of multi-objective algorithms. Our results
indicate that MO-HO is the most efficient algorithm, significantly

outperforming Single-Objective Search and De-MO. Also, this algo-
rithm is able to reproduce 8 and 5 more crashes in 1 and 5 minutes,
respectively, compared to the state-of-the-art. Moreover, in contrast
to the previous multi-objectivized crash reproduction approach (De-
MO), the crash reproduction ability of MO-HO increases with large
search budgets (i.e., above two minutes).

We performed an additional analysis to find the correlation be-
tween the different aspects of the crashes and the ability ofMO-HO
in reproducing them. The result of this analysis shows that two
factors in crashes significantly impact the performance of MO-HO:
(i) type of exception and (ii) the number of crash stack frames.

Furthermore, we observed that Single-Objective Search and De-
MO could outperformMO-HO but only in a few cases.We performed
a manual analysis to characterize the negative factors leading to the
adverse results in these cases. Our analysis reveals that two negative
factors are at play in these cases: (i) extra calculations in fitness
evaluation and (ii) helper-objectives misguidance. We also showed
in Section 5.4 that while the differences in extra calculations in fitness
evaluation are significant, they are often negligible in practice.

The contributions of the paper are as follows:
(1) An open-source implementation of seven crash reproduction

techniques (Section 4.1).
(2) An empirical comparison of seven search-based crash repro-

duction approaches (Section 4).
(3) An analysis of the benefits of multi-objectivization with

helper objectives in terms of reproduction ratio and effi-
ciency (Section 5).

(4) The identification of the special situations in which MO-HO
can be counter-productive (Section 5.4).

(5) The identification of a strong correlation between the ability
of MO-HO in improving the efficiency and effectiveness of
crash reproduction for combinations of exception types and
the number of frames in the stack trace of the target crash
(Section 6.2).

In our future work, we will investigate additional helper-objecti-
ves for crash reproduction. For instance, the current helper-objectiv-
es inMO-HO concern the test length andmethod sequence diversity.
However, further objectives can be added, such as test input/data
diversity. Increasing the number of objectives will require to evalu-
ate their performance using different many-objective evolutionary
algorithms. We will also analyze the evolution of the fitness values
of existing and new objective to further investigate the root causes
of good and bad performances of MO-HO and other objectives for
different crashes and different MOEAs.

Moreover, the search objectives introduced by De-MO is only op-
timized by NSGA-II MOEA. As future work, we will investigate the
impact of utilizing other MOEAs for optimizing De-MO objectives.
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