
A Public Benchmark of REST APIs
Alix Decrop

NADI, University of Namur
Namur, Belgium

alix.decrop@unamur.be

Sara Eraso
University of Valle

Cali, Valle del Cauca, Colombia
sara.eraso@correounivalle.edu.co

Xavier Devroey
NADI, University of Namur

Namur, Belgium
xavier.devroey@unamur.be

Gilles Perrouin
NADI, University of Namur

Namur, Belgium
gilles.perrouin@unamur.be

Abstract—In software engineering, benchmarks are widely
used to evaluate and compare the performance, functionality, and
reliability of analysis tools. Despite the prevalence of benchmarks
in areas such as databases, machine learning, and programming
languages, there is a notable absence of publicly available
benchmarks for REST APIs, a cornerstone of modern web-based
systems. While existing research papers occasionally employ sim-
ilar REST APIs in their evaluations, opportunistic API selection
hampers comparison. Moreover, these studies often rely on API
documentation and structural characteristics. Without a reliable
benchmark, API data used in evaluations may be outdated or
inaccurate, compromising reliability and reproducibility.

Hence, this paper addresses a gap in the literature by providing
a comprehensive and Public REST API Benchmark (PRAB), to
be utilized by researchers in their evaluations. The benchmark
contains documentation and structural characteristics of 60
publicly available REST APIs. First, we conduct a systematic
mapping study to discover the available and public REST APIs
that are utilized in the academic literature. Then, by analyzing
the resulting APIs, we report their structural characteristics
(e.g., routes, query parameters, HTTP methods, authentication).
Finally, we provide their documentation (i.e., OpenAPI Spec-
ification, Postman Collection) in a publicly available GitHub
repository, to help with future evaluations of REST API studies.

Index Terms—REST API, Benchmark, Documentation, Ope-
nAPI Specification, Testing, Systematic mapping study.

I. INTRODUCTION

REST APIs are very popular for supporting web services,
such as providing country data, currency exchange statuses,
weather information, movie databases, etc. Such APIs adhere
to the REpresentational State Transfer (REST) [1] architectural
style, hence the name. REST is characterized by a set of
design principles; In particular, REST APIs utilize the HTTP
protocol to send requests and receive responses containing
usage-related data.

REST APIs utilize documentation for two key reasons. First,
documentation is required for users to understand the inner
workings of a REST API. Indeed, since such APIs utilize
routes, parameters, and base URLs, the user must understand

This research was funded by the CyberExcellence by DigitalWallonia
project (No. 2110186), funded by the Public Service of Wallonia (SPW
Recherche); Sara Eraso received support from ERASMUS; Gilles Perrouin
is an FNRS Research Associate.

978-1-5386-5541-2/18/$31.00 ©2025 IEEE. This is the authors’ version. The
final version is published in the Proceedings of the 2025 IEEE/ACM 22nd
International Conference on Mining Software Repositories (MSR), 28-29
April 2025, Ottawa, Canada.

Fig. 1. Human-readable documentation excerpt for the Spotify API.

how to employ them to form relevant requests. To this end,
any form of documentation is viable, as long as it is human-
readable and contains natural language descriptions/examples.
Thus, many REST APIs have a publicly available website, on
which a documentation web page is often available. Figure
1 presents a human-readable documentation excerpt for the
Spotify API [2], serving solely as an illustration example.

Second, testing tools for REST APIs require machine-
readable API documentation to drive test generation. Such
testing tools can detect bugs in REST APIs, by uncovering
server errors (e.g., 5xx status codes returned by the API
server). Most tools employ the OpenAPI Specification (OAS)
[3], which uses the YAML or JSON formats. One can also
produce human-readable documentation from an OAS specifi-
cation via, e.g., the Swagger Editor [4]. Another popular form
of machine-readable specification is a Postman Collection [5].

REST API testing is an active research field (e.g., [6], [7],
[8], [9]) offering diversified tools such as fuzzers and static
analyzers. To evaluate their techniques, researchers select APIs
of interest depending on characteristics such as size, OAS
availability, and access to the source code that matches the
techniques’ hypotheses. Some REST APIs are used in dif-
ferent research papers, such as the Features Service API [10]
(microservice for managing products feature models), enabling
comparison among tools. However, there is a notable absence
of publicly available benchmarks for REST APIs. This hinders
(1) comparison as researchers use convenience sampling when
selecting APIs, and (2) reliability as evaluation data (e.g., API
documentation) can be outdated and/or incorrect. This paper
aims to fill this gap by gathering a set of 60 public REST
APIs based on a systematic mapping study and analyzing their
structural characteristics/documentation. Overall, this paper
offers the following key contributions:

1) A Public REST API Benchmark (PRAB), containing doc-

umentation and structural characteristics of 60 public and
distinct REST APIs.

2) A systematic mapping study to discover and analyze the
REST APIs that are utilized in the evaluations of relevant
research papers.

3) A publicly available GitHub repository [11], containing
our benchmark and evaluation data.

We provide the background and related work in Section II.
Then, we describe our approach in Section III. Section IV
presents our evaluation, while Section V offers an additional
discussion. Section VI describes threats to validity. Finally,
Section VII wraps up with the conclusion and future work.

II. BACKGROUND AND RELATED WORK

A. REST APIs

REpresentational State Transfer (REST) [1] is an architec-
tural style offering several principles for web-based application
design. These principles include stateless communication on
top of the HTTP protocol, using requests to perform various
CRUD (create, read, update, delete) operations on data re-
sources identified by URIs. In a HTTP request, routes (e.g.,
/users) and query parameters (e.g., name=john) describe
what the API should do. APIs implementing or extending
REST are termed RESTful [12].

HTTP status code interpretations are API-dependent. For the
REST Countries API [13], a response for a request with an
invalid route contains a 404 - Not Found status code, which
is the standard for non-existing resources. However, for the
Bored API [14], it would contain a 200 - OK status code
with the following JSON data: {"error":"Endpoint not

found"}. Both APIs adhere to HTTP and utilize it to indicate
an invalid route, yet not in the same manner.

Regarding API terminology, we use the term “REST API”
for an API adhering to the REST architectural style defined
by Fielding [1]. In this paper, the term “API” is used as a
shorthand for a REST API.

B. REST API Documentation

One can rely on documentation to better understand API
usage. The OpenAPI Specification (OAS) [3] - previously
known as the Swagger Specification - is a widely adopted
format for describing REST APIs. OAS is machine-readable
and also human-readable, as some fields can contain natural
language descriptions. Moreover, editing tools such as the
Swagger Editor [4] can convert OAS into human-readable
documents. Figure 2 presents an illustration example of an
OAS excerpt for An API of Ice and Fire [15].

Another way to document REST APIs is by using Postman
[5]. Postman is largely used for developing, testing, and
managing REST APIs. It provides tools for crafting and send-
ing requests, managing environments, and automating tests.
REST APIs can be organized in a Collection with Postman,
containing descriptions regarding their routes, HTTP methods,
parameters, etc. Similarly to OAS, one can export a Postman
Collection in the JSON format.

Fig. 2. Example of an OpenAPI Specification excerpt, in the YAML format.

Documenting is important, allowing developers to under-
stand, reuse, and test APIs; Sohan et al. [16] underlined the
effectiveness of documenting API usage examples. However,
documenting is time-consuming and error-prone. Neglecting
this task results in unavailable, incomplete, or non-machine-
readable documentation. As a result, automated documentation
generation has been explored in the literature. Some existing
methods require a prior form of documentation [17], [18], [19],
an HTTP proxy server [20], crawling the API user interface
[21], [22], using API call examples [23], or utilizing white-box
static analysis [24].

C. Black-Box REST API Testing

REST API testing is an active research field, as witnessed
by several surveys [25], [26], [27]. State-of-the-art automated
testing tools commonly use a black-box approach, requiring an
OAS of the API under test [28], [29], [30], [31], [32], [33],
[34], [35], [36], [37], [38], [39], [7], [40], [41], [42], [43],
[9]. REST API testing consists of generating random HTTP
requests based on a specification given as input, and analyzing
the HTTP responses returned by the API server based on an
oracle. Testing is important to mention in this work, as an
objective of our benchmark is to assist testing practices by
providing public documentation (OAS) for REST APIs.

D. REST API Benchmarks

As explained in Section I, there exists no public benchmark
of REST APIs. However, REST APIs are sometimes included
in larger benchmarks. Arcuri et al. [44] propose EvoMaster
Benchmark (EMB), a publicly available GitHub repository
containing a set of web applications for experimentation in
automated system testing, mainly for the tool EvoMaster [45].
Di Meglio et al. [46] present a performance benchmark of

frameworks and execution environments, to be utilized when
starting a new REST API project. Neumann et al. [47] analyze
500 REST APIs in terms of compliance and adherence to best
practices. Bermbach et al. [48] present a revisited benchmark
of web API quality. Finally, Amoroso et al. [49] provide a
microservice dataset including projects for REST APIs.

Research studies for REST APIs often construct their own
benchmarks. Indeed, for evaluation purposes, a set of REST
APIs is required to demonstrate the effectiveness and effi-
ciency of the new approaches. Unfortunately, the evaluation
benchmarks are never the same in research papers. To illus-
trate, we found 2 different research papers [9], [24] with REST
APIs in their evaluations. Certain APIs can be found in the
evaluation of both research papers: the OCVN, Ohsome, and
REST Countries APIs. Nonetheless, other APIs do vary (e.g.,
the second paper uses the DigDag, EnviroCar, and Catwatch
APIs), which is worrisome for comparison purposes. For this
reason, we aim to synthesize the REST APIs used in the
evaluations of various research papers into a comprehensive
and public benchmark.

Websites such as APIs.guru [50] and Public APIs [51] offer
extensive listings of REST APIs. However, they lack reliability
in terms of evolution (multiple APIs are outdated or do not
exist anymore), relevance (a lot of APIs are not used in related
research, or not found on the web), and completeness (the
Public APIs repository only lists API websites).

III. APPROACH

To build our benchmark of REST APIs, we conducted a
systematic mapping study, following a process provided by
Petersen et al. [52]. We explain the protocol in the following
subsections.

A. Research Questions

To begin, we formulate the following research questions:
RQ.1: Which research papers in the REST API literature
contain an evaluation with a set/benchmark of REST
APIs? RQ.1 aims to filter the papers in the REST API
literature that contain a set (or a benchmark) of REST APIs
in their evaluation. Indeed, most REST API studies utilize a
set of APIs to evaluate their approach. This forms the starting
point of our building process.
RQ.2: Which REST APIs are used in the relevant scientific
literature? RQ.2 aims to present the REST APIs employed in
the scientific literature (i.e., in the research papers of RQ.1), as
the main objective of this paper is to provide a comprehensive
benchmark of public REST APIs. In consequence, RQ.2 will
identify the candidate APIs for our benchmark.
RQ.3: Which REST APIs obtained in RQ.2 are actionable
for research purposes? In addition to their identification, we
must verify if the APIs found in RQ.2 can be used in the
benchmark. Indeed, if an API mentioned in a paper is not
public, is anonymized, has no documentation, or does not exist
anymore, there is no purpose in adding it to the benchmark as
it is not actionable for research purposes. The aim of RQ.3 is
thus to filter out undesirable APIs, based on defined criteria.

RQ.4: What are the structural characteristics of the REST
APIs? RQ.4 aims to detail the structural characteristics of
the REST APIs selected in RQ.3. In the context of this
paper, the structural characteristics comprise the number of
routes and query parameters of the API, the distribution of
HTTP methods employed in the API, the rate limit, the
authentication method, etc. These characteristics allow for a
more informed selection, enabling researchers to filter APIs
that match specific experimental needs.
RQ.5: How to obtain the OpenAPI Specifications of the
REST APIs? As mentioned in Section II, OAS is a widely
adopted format used by many REST API testing tools. In
consequence, this documentation format is a crucial aspect of
our benchmark, for usability purposes. In consequence, RQ.5
aims to find the OpenAPI Specifications of the REST APIs
and explains the inference process. The specifications found
throughout RQ.5 are provided in our GitHub repository [11].

B. Search Strategy

Next, we formulate a search strategy. To identify relevant
papers, we used the following list of online databases:

• ACM Digital Library
• Google Scholar
• IEEE Xplore
• MIT Libraries
• Semantic Scholar
We craft a search string focusing on REST APIs and

evaluations to find relevant studies. We also include testing
and documentation keywords, which reflect our motivation
detailed in Section I and Section II. The search string is:

SEARCH STRING = "(REST OR RESTful) API (test

OR testing OR documentation OR specification

OR OpenAPI OR Swagger) (evaluation OR

benchmark OR set)"

We used a snowballing technique to ensure that no relevant
articles were overlooked. This allows us to expand the initial
corpus of papers by looking at referenced papers, alleviating
search engine limitations and broadening the search scope.
Consequently, we applied our research string to the five
different databases. We synthesized our findings, by combining
the papers found in a single file and removing the duplicates
(i.e., the same research paper appearing in different databases).
The results of this process (including snowballing) yielded 100
distinct research papers for consideration.

C. Relevant Papers

To filter relevant papers, we define inclusion and exclusion
criteria in Table I. Inclusion criteria n°2 states that “the work of
the paper on REST APIs is related to one of the following ar-
eas: testing or documentation”. Indeed, as presented in Section
I and Section II, the two main topics in the REST API field are
testing and documentation. These additional criteria provide
a supplementary guard against including papers referring to
REST APIs but not solving a problem related to the REST

Fig. 3. Overview of the research paper acceptance, based on our inclusion
and exclusion criteria. Red slices are rejected papers, of different categories.
Not Acc. = Not Accessible.

API research field. Exclusion criteria n°3 states that “the set of
REST APIs used in the evaluation of the paper is not explicit
or private”. This is when the research paper only mentions
the number of APIs used from a repository or refers to an
unidentified internal (or private) API. For instance, if a paper
does not explicitly present the set of REST APIs used in the
evaluation, the paper will be rejected. We did not exclude
papers that are not peer-reviewed (e.g., from arXiv, books,
or Master’s Theses), as they may list interesting APIs as well.
Similarly, we did not exclude surveys/literature reviews and
cited their API occurrences.

Based on these inclusion and exclusion criteria, we accepted
29% of papers and rejected the remaining 71%. Figure 3
presents the categories of accepted and rejected papers along
with their respective percentages. 2% of the papers were
rejected as very similar papers were already accepted. In this
case, we compare the two similar papers and only accept
the most recent one. Moreover, 24% of papers were rejected
because they contained an invalid API set. Such papers did
contain an evaluation with a set of REST APIs, but did not
satisfy our inclusion criteria. An invalid API set is when:

• The research paper does not explicitly state the REST
APIs used in the evaluation. For instance, if a paper
mentions “200 APIs were used” but fails to list the APIs
explicitly, it will be rejected.

• The research paper utilizes private REST APIs.
We also rejected papers that did not contain an API set

in their evaluation (32%) and papers that were not accessible
(13%).

D. Keywording

In this step, we list the most frequent keywords found in the
surveyed studies to understand their context and ensure it is in
line with our search string. This approach allows us to develop
a high-level understanding of the nature and contribution of the
research papers. We also classify the research papers according
to different facets and/or categories. To do so, we analyze the
research papers which were filtered and selected in Section
III-C.

The keywords indicated in the selected research papers are
extracted. When a keyword is composed of multiple words

(e.g., REST API, black-box testing), it is decomposed so
that each word can be analyzed individually (e.g., REST,
API, black-box, testing). The keywords are then documented
when they occur at least three distinct times. The number
of occurrences for similar keywords such as test/testing,
REST/RESTful, and API/APIs are merged. Table II presents
the resulting set of keywords. As displayed, the “test/testing”
keyword occurs the most (38 occurrences), followed by
“REST/RESTful” (23 occurrences), and by “API/APIs” (17
occurrences). This is in line with the scope of our search
string defined in Section III-B. Other keywords such as “web”,
“generation”, “software”, “OpenAPI”, and “black-box” also
appear in different research papers.

E. Data Extraction and Analysis

Table III shows the information extracted from the 29
studies that were selected. It maps the role of extracted data
for each research question and gathers it into categories.

Another important information to extract from the selected
research papers is the venue in which they were published.
To do so, the publication’s acronym was extracted from
each research paper. For research papers published in confer-
ences, their rank was found on the ICORE Conference Portal
(CORE2023 database) [53]. Table IV presents the publications,
sorted by occurrences. As depicted, most selected references
are published in conferences and journals. Eight distinct papers
are published in the renowned conferences ICSE (A* rank) and
ISSTA (A rank). Some other research papers are published
in FSE, ASE (A* rank), ICSME, ICSOC, and ISSRE (A
rank). Three selected research papers are published in the
TOSEM journal. Additionally, only two unpublished papers
were extracted from arXiv, and only two references were
Master’s Theses.

IV. EVALUATION

A. RQ.1 - Research Papers with REST API Evaluations

Our first research question aims to find the research papers
in the REST API literature that contain an evaluation. The
evaluation should contain a set of REST APIs, that we can
leverage to construct the benchmark. Section III already details
the process used to find the relevant research papers.

RQ.1 Summary: By searching with a specific search
string and in five different databases, we could extract
100 distinct research papers. Next, by applying our
inclusion and exclusion criteria, we could filter and
accept 29 relevant research papers (i.e., containing a
valid set of REST APIs in their evaluations).

B. RQ.2 - REST APIs Used in the Literature

The second research question aims to find the REST APIs
that will constitute our benchmark. RQ.1 and Section III
presented the approach (i.e., systematic mapping study) that
was used to find the relevant papers in the literature. The REST
APIs used in the evaluations of these papers were identified,

TABLE I
INCLUSION AND EXCLUSION CRITERIA USED TO FILTER RELEVANT RESEARCH PAPERS.

Inclusion Criteria

(1) The main subject of the paper is about REST (or RESTful) APIs.
(2) The work of the paper on REST APIs is related to one of the following areas: testing or documentation.

Exclusion Criteria

(1) The paper mentions REST APIs, but they are not the primary contribution (e.g., implementing a REST API for a tool instead
of addressing a fundamental REST API problem).
(2) The paper does not contain a set of REST APIs in its evaluation.
(3) The set of REST APIs used in the evaluation of the paper is not explicit or private.
(4) The paper closely resembles/duplicates a previously accepted paper (we only retain the most recent version of the work).
(5) The paper is not in English.
(6) The complete reference (research paper, book, thesis, etc.) is not accessible.

TABLE II
SUBSET OF KEYWORDS (WITH AT LEAST THREE OCCURRENCES)

EXTRACTED FROM THE SELECTED RESEARCH PAPERS.

Keyword No. Occurrences

Test / Testing 38
REST / RESTful 23
API / APIs 17
Web 9
Generation 8
Software 8
OpenAPI 7
Black-box 5
Case 5
Service 4
Analysis 3
Coverage 3
Language 3
Specification 3

extracted, and reported. API occurrences are also documented
(i.e., appearing in multiple papers). A total of 80 APIs were
found, which are cited in our public GitHub repository [11].

RQ.2 Summary: From the 29 selected research papers
(i.e., satisfying our inclusion and exclusion criteria),
we could extract 80 distinct REST APIs. The number
of occurrences in research papers for each API ranges
from a minimum of 1 to a maximum of 12. The three
APIs appearing the most are Features Service [10] (12
occurrences), LanguageTool [54] (10 occurrences), and
ProxyPrint [55] (9 occurrences).

C. RQ.3 - Actionable REST APIs for the Benchmark

Before creating the benchmark of REST APIs, an additional
filtering process needs to be done. As the primary goal of
our benchmark is to provide structural characteristics and
documentation (i.e., OAS), some REST APIs that were found
might not be used. Indeed, if an API referenced in a research
paper is not publicly available, is anonymized, does not exist
anymore, or does not contain any form of documentation,
it should be excluded from the benchmark as it cannot be
leveraged by testing tools and API users.

In consequence, we filtered out certain APIs based on addi-
tional exclusion criteria. Table V presents the exclusion criteria
with the number of APIs excluded from the benchmark. For
instance, the Ind0 API was excluded from our benchmark, as
the API was anonymized with the name “Industrial API n°0”
(hence Ind0). Another example is the Bored API, as its URL
leads to a “Heroku Application Error” page, signifying that
the API server is no longer online. Moreover, 9 APIs were
excluded as no reference was found online/in the research
papers. One of the API documentation was not in English,
and thus it was rejected as we could not understand it. As a
result, the benchmark contains a total of 60 valid APIs, out of
the initial 80 APIs found in the research papers.

Due to size limitations, Table VI presents a subset of our
benchmark, limited to the REST APIs appearing in at least 2
distinct research papers. This results in an excerpt of 28 APIs,
out of the 60. Nevertheless, the full benchmark is available
in our GitHub repository [11]. For each API, the Application
Domain is detailed. Moreover, the Used By column contains
the citations for the research papers that utilize the API.
Finally, the No. Occurrences provides the total number of
citations for the API.

RQ.3 Summary: To filter the REST APIs that are
actionable for the benchmark, we excluded 20 APIs out
of the initial 80 APIs that were found in RQ.2. Indeed,
certain APIs were excluded for different reasons (e.g.,
could not be found, did not exist anymore, were
anonymized, etc.), hampering the benchmark quality.
In consequence, this translates to a benchmark of 60
public and actionable REST APIs.

D. RQ.4 - Structural Characteristics of the REST APIs

After selecting REST APIs for the benchmark, the next step
consists of identifying their structural characteristics. Indeed,
the structure of a REST API can drastically change from one
API to another API. For instance, an API could contain a
single GET route with various usable query parameters (e.g.,
a /users route with the query parameters id, name, age).
On the other hand, an API could contain a lot of different

TABLE III
DATA EXTRACTION PROPERTIES MAPPED TO THE RESEARCH QUESTIONS.

Property Type of Data Extracted Research Question

Global Information Authors, title, publication year, summary RQ.1, RQ.2, RQ.3, RQ.4
Research Problem Research questions related to REST APIs RQ.1, RQ.2, RQ.3, RQ.4
Sources Implemented Set of APIs used, and frequency of use RQ.1, RQ.2
Documentation Available documentation (OpenAPI/Postman formats) RQ.3, RQ.4, RQ.5
Structural Characteristics HTTP methods, number of routes, parameters, authentication method, etc. RQ.4

TABLE IV
CONFERENCES, JOURNALS, AND ARCHIVES IN WHICH THE SELECTED

RESEARCH PAPERS WERE PUBLISHED, SORTED BY OCCURRENCE.

Published In Category (Rank) No. Occurrences

ICSE Conference (A*) 4
ISSTA Conference (A) 4
TOSEM Journal 3
arXiv Archive 2
FSE Conference (A*) 2
University Library Master’s Thesis 2
ASC Journal 1
ASE Conference (A*) 1
A-TEST Workshop 1
COORDINATION Conference (C) 1
DEEPTEST Workshop 1
ECMFA Conference (New) 1
ICSME Conference (A) 1
ICSOC Conference (A) 1
ISSRE Conference (A) 1
SCAM Conference (C) 1
SENSORS Journal 1
SQJ Journal 1

TABLE V
NO. OF REST APIS EXCLUDED FROM THE BENCHMARK WITH

CORRESPONDING EXCLUSION CRITERIA.

Exclusion Criteria No. Excluded APIs

The API cannot be found 9
The API does not exist anymore 3
The API does not have a documentation 2
The API installation fails 2
The API documentation is not in English 1
The API has an invalid OAS/Postman file 1
The API is anonymized 1
The API is not REST 1

specialized GET routes without any query parameters (e.g.,
the routes /user/{id}, /user/{name}, /user/{age}).

Moreover, REST APIs utilize different HTTP methods
depending on their application domain. For instance, APIs
specialized in retrieving data (e.g., a weather API to retrieve
the current weather, precipitation index, or weekly forecast)
would contain various routes with the GET HTTP method.
Other APIs specialized in sending data (e.g., a booking API
to book a hotel room, order food, or send a payment) would
contain various routes with the POST HTTP method. Sim-
ilarly, update-heavy APIs would utilize the PATCH (modify
parts of a resource) and PUT (create or replace a resource)
HTTP methods.

Structural characteristics related to API usage are also

important. For instance, if a user wants to leverage a REST
API, the user needs to have a direct overview of the API
authentication method, pricing, and rate limits/quotas. The
user can then choose APIs in an informed and transparent
way. Therefore, we identified structural characteristics that are
important for API usage and testing. We consider the following
characteristics:
Ref. The reference (e.g., official website, GitHub repository,
etc.) of the REST API, containing usage-related information.
This reference is notably used when verifying structural char-
acteristics such as authentication, pricing, and rate limits. We
did not include API source code in our benchmark. Instead, our
references lead to the respective download pages (or websites)
of the REST APIs.
Availability. The availability of the API:

• LOCAL: The API has to be deployed locally.
• ONLINE: The API is hosted on a web server online.
• BOTH: The API can be deployed locally and is also

hosted online.

Auth. The authentication method to access the API:
• KEY: The API requires an access key for user authenti-

cation.
• NO: The API does not require authentication.

Pricing. The pricing required to use the API:
• YES: The API has a mandatory pricing plan.
• NO: The API has no pricing plan and is entirely free.
• OPT: The API has an optional pricing plan, yet can still

be used freely.

Limits. The request rate limits and/or quotas when using the
API:

• YES: The API has a rate limit and/or a quota.
• NO: The API has neither a rate limit nor a quota.

No. Routes. The total number of routes contained in the API.
As a single route can handle multiple HTTP methods at once
(e.g., /cart route with GET to see items in the cart and POST
to add items to the cart), it is plausible that an API contains
fewer routes than HTTP methods.
No. Param. The total number of distinct query parameters
from all routes contained in the API. For example, if a
fictive API contains a /getPet route accepting the parameters
[id, name, species] and a /getStore route accepting
the parameters [id, location], the resulting set of query
parameters for the API consists of [id, name, species,
location].

TABLE VI
SUBSET OF REST APIS FROM THE BENCHMARK, OCCURRING IN AT LEAST 2 DISTINCT RESEARCH PAPERS.

API Name Application Domain Used By No. Occurrences

Amadeus Hotel Hotel Booking [41], [56], [57] 3
Catwatch GitHub Statistics [58], [59], [60], [24], [61], [62], [63] 7
CWA Verification Server Verification Server in CWA App [64], [60], [24] 3
FDIC Federal Deposit Insurance Corporation [41], [9] 2
Features Service Management Products [62], [58], [64], [36], [65], [59], [60], [24], [61], [66], [67], [63] 12
Foursquare Global POI Data [41], [68], [19] 3
Genome Nexus Genome Data [64], [9] 2
Gestao Hospital Hospital Data [60], [67] 2
GitHub GitHub Integration and Automation [68], [19], [56], [57], [69] 5
LanguageTool Text Review [64], [36], [41], [60], [9], [66], [67], [70], [69], [71] 10
Marvel Marvel Comics Data [41], [56] 2
OCVN Importing Vietnam Public Procurement Data [64], [60], [24], [9], [66], [63] 6
Ohsome OpenStreetMap History Data [41], [24], [9], [70], [71] 5
OMDb Movies Data [41], [9], [23], [72], [56], [57] 6
PetClinic Mock Pet Clinic [72], [67], [8] 3
PetStore Mock Pet Store [36], [23], [67], [6], [73], [74] 6
ProxyPrint Printshops and Consumers [58], [64], [59], [60], [24], [61], [66], [62], [63] 9
Realworld App Platform Build Display [60], [8] 2
REST Countries Country Data [64], [41], [60], [24], [9], [72], [67], [70], [71] 9
REST NCS Numerical Case Study [64], [59], [60], [61], [66], [75], [62], [63] 8
REST News News Sources and Blogs [58], [64], [59], [60], [61], [66], [75], [62] 8
REST SCS String Case Study [64], [59], [60], [61], [66], [75], [62], [63] 8
Scout API Amazon Products Data [58], [64], [65], [59], [60], [61], [66], [62], [63] 9
Spotify Spotify Music Streaming Service Interaction [41], [9], [56], [57] 4
Stripe Financial Services [38], [41], [68], [19], [69] 5
Tumblr Microblogging and Social Networking [68], [19] 2
Yelp Crowd-sourced Reviews about Businesses [38], [41], [68], [19], [56], [57], [69] 7
YouTube YouTube Features [38], [41], [68], [9], [56], [57], [69], [71] 8

GET / POST / PUT / DELETE / PATCH. The total number
of routes of the specified HTTP method (GET, POST, PUT,
DELETE, or PATCH) that the API supports.

The structural characteristics being explained, Table VII
presents the results for the 28 APIs of our benchmark subset.

In addition, we present different statistics and results for the
whole benchmark of 60 APIs. Figure 4 presents usage-related
characteristics in various polar area charts. For the Availability
structural characteristic, we can see that there are slightly more
online APIs (58%) compared to local APIs (42%). Moreover,
the Authentication and Limits characteristics display very
similar results, seemingly correlating as an API key is notably
used to track user request limits. We also mention that no
local API requires a per-request pricing and/or rate limit, as
the server is hosted locally.

Next, general data regarding the routes, query parameters,
and HTTP methods is important to analyze. Thus, we present
(1) the route to query parameter ratio and (2) the HTTP
method distribution for each REST API of the benchmark, in
two distinct stacked column charts (in percentages, rounded
to the nearest integer). As there are 60 APIs, each one is
represented by a number in the charts (ranging from 1 to
60). The API names corresponding to the numbers can be
found in our GitHub repository [11]. Figure 5 presents the
ratios, and Figure 6 presents the HTTP method distribution.
On average, APIs usually have a slightly higher percentage
of routes (60%) than query parameters (40%). Regarding the
HTTP method distribution, GET is the most prominent method
on average (67%), followed by POST (21%), DELETE (6%),
PUT (5%), and finally PATCH (1%). Accordingly, we observe
a larger proportion of GET HTTP methods, suggesting that
REST APIs are more inclined towards data retrieval rather

than server-side data modifications. The application domains
may suggest this inclination.

RQ.4 Summary: Various structural characteristics for
the REST APIs of the benchmark were extracted from
API websites, repositories, OpenAPI Specifications,
and Postman Collections. These characteristics include
important usage-related factors, such as local/online
availability, authentication method, pricing, and rate
limits. Characteristics such as routes, query parame-
ters, and HTTP methods were also quantified. Addi-
tional insight regarding the structural characteristics is
provided in Section V.

E. RQ.5 - OpenAPI Specifications of the REST APIs

The last research question assesses the public documenta-
tion (OAS) provided with the REST APIs of our benchmark.
As mentioned previously in the paper, REST API testing tools
often require an OpenAPI Specification of the API under test.
Additionally, API users can leverage the OAS for understand-
ability purposes. Consequently, we provide a publicly available
OpenAPI Specification for all of the APIs considered in the
benchmark, which can be found in our GitHub repository [11].
To do so, we meticulously analyzed API resources online (e.g.,
official API websites, related repositories, Postman collections,
etc.).

Occasionally, the API websites contained an available OAS
file (JSON or YAML format) to download, or a reference
URL to an OAS file. However, some API websites contained
outdated documentation. For this reason, we verified different
websites related to the REST APIs. Whenever we found

TABLE VII
STRUCTURAL CHARACTERISTICS FOR A SUBSET OF REST APIS FROM THE BENCHMARK.

API Name Ref. Availability Auth. Pricing Limits No. Routes No. Param. GET POST PUT DELETE PATCH

Amadeus Hotel [76] ONLINE KEY OPT YES 48 47 37 13 0 1 0
Catwatch [77] LOCAL NO NO NO 6 8 6 0 0 0 0
CWA Verification Server [78] LOCAL NO NO NO 5 0 0 5 0 0 0
FDIC [79] LOCAL NO NO NO 8 15 8 0 0 0 0
Features Service [10] LOCAL NO NO NO 11 0 6 6 1 5 0
Foursquare [80] ONLINE KEY OPT YES 22 22 16 6 0 0 0
Genome Nexus [81] BOTH NO NO NO 22 6 13 10 0 0 0
Gestao Hospital [82] LOCAL NO NO NO 13 4 10 10 3 2 0
GitHub [83] ONLINE KEY OPT YES 638 76 510 154 91 154 56
LanguageTool [54] ONLINE KEY OPT YES 5 0 2 3 0 0 0
Marvel [84] ONLINE KEY NO YES 39 38 39 0 0 0 0
OCVN [85] LOCAL NO NO NO 96 26 96 96 0 0 0
Ohsome [86] ONLINE NO NO NO 61 18 61 61 0 0 0
OMDb [87] ONLINE KEY OPT YES 1 11 1 0 0 0 0
PetClinic [88] LOCAL NO NO NO 17 1 14 9 7 6 0
PetStore [89] LOCAL NO NO NO 13 6 8 6 2 3 0
ProxyPrint [55] LOCAL NO NO NO 79 0 48 30 14 10 4
Realworld App [90] LOCAL NO NO NO 12 3 7 6 2 4 0
REST Countries [13] ONLINE NO NO NO 22 16 22 0 0 0 0
REST NCS [91] LOCAL NO NO NO 6 0 6 0 0 0 0
REST News [92] LOCAL NO NO NO 6 2 3 1 3 0 0
REST SCS [93] LOCAL NO NO NO 11 0 11 0 0 0 0
Scout API [94] LOCAL NO NO NO 21 25 21 10 7 9 2
Spotify [2] ONLINE KEY NO YES 68 63 59 5 17 8 0
Stripe [95] ONLINE KEY NO YES 388 138 257 271 0 32 0
Tumblr [96] ONLINE KEY NO YES 16 19 10 6 0 0 0
Yelp [97] ONLINE KEY OPT YES 6 3 6 0 0 0 0
YouTube [98] ONLINE KEY NO YES 46 71 20 11 0 15 0

Fig. 4. Polar area charts of different usage-related structural characteristic, for all REST APIs of the benchmark. The percentages are rounded to the nearest
integer.

different OpenAPI Specification files, we attempted to provide
the most up-to-date version. For instance, the official Spotify
API documentation has not been updated in years, according
to a community post [99]. While searching the web, we found
that a GitHub repository was created to provide up-to-date
documentation for the Spotify API [100]. Consequently, we
leveraged the GitHub repository data to extract the OpenAPI
Specification for the Spotify API. Furthermore, we also uti-
lized tools to transform Postman Collections into OpenAPI
Specifications, which we further discuss in Section V.

RQ.5 Summary: For all of the REST APIs in our
benchmark, we were able to provide a publicly avail-
able OpenAPI Specification for (1) testing and (2) user
understandability purposes. We cross-checked multiple
sources related to the APIs (e.g., official API web-
sites, Postman Collections, Swagger UIs, and GitHub
repositories) to extract the most up-to-date documen-
tation. The OpenAPI Specifications can be found in
our GitHub repository [11]. For APIs comprising a
Postman Collection, it is also included in a JSON file.

0%

25%

50%

75%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Query Parameters Routes

Fig. 5. Stacked column chart of the route to query parameter ratio (in percentages), for each REST API of the benchmark.

V. DISCUSSION

Actionable Insights and Guidance on Using the Bench-
mark. The main outcome of this research is our benchmark
backed by a systematic mapping study. Our goal was not to
evaluate the design quality of REST APIs but to provide an
unbiased and comprehensive benchmark containing documen-
tation and structural characteristics of 60 public REST APIs.
The benchmark is aimed to be used by users, testers, and
researchers in their evaluations. We cannot assert that a certain
API is better compared to another API in the benchmark.
Indeed, as REST is not a standard but rather an architectural
style, there are multiple ways to implement a REST API
(c.f. Section II and Section IV-D). Therefore, we leave the
selection of APIs up to the benchmark users but provide
concrete metrics to support evidence-based API selection. For
instance, a tool for REST API security testing might require
the evaluation of APIs that allow data to be sent to the server
(i.e., with the POST HTTP method). The evaluation of such a
tool would utilize a subset of our benchmark, comprising APIs
with a high distribution of POST methods. In consequence,
the structural characteristics provided in our benchmark enable
researchers to filter the APIs they find relevant (i.e., that match
specific experimental needs), without the necessity to utilize
all 60 APIs.

For research implying source code analysis, we include
URLs for downloading (local) or using (online) the REST
APIs. Our quality criteria excluded non-deployable APIs (cf.
Table V). Fuzzing research also cares about request rate
limits, pricing, and authentication mechanisms, which we also
include. Finally, we provide up-to-date documentation in both
OpenAPI/Postman formats, which testing tools can leverage.
We did not include API source code in our benchmark but

rather reference it via respective URLs (GitHub repositories,
website downloads, etc.).

On Structural Characteristics. Section IV-D presented var-
ious structural characteristics for the REST APIs of the
benchmark, such as the HTTP method distribution and the
route to query parameter ratio. These characteristics seldom
provide insights into API quality on their own, but depend on
the application domain and/or context of the API (e.g., GET
for retrieving weather data, and POST for sending restaurant
orders). However, the presence of certain methods may expose
APIs to specific issues (e.g., code injection for POST methods)
and be the target of certain quality assurance techniques. For
this reason, we allow benchmark users to filter the APIs based
on their needs and/or specific criteria. Moreover, results in
RQ.4 offer a basis for understanding common variations in
API structural design, potentially serving as a reference for
future implementations or for improving existing APIs.

Benchmark Documentation. Section IV-D displayed a high
variability in the surveyed APIs, inducing diverse granularity
levels. Thus, documentation content/elements provided in the
benchmark differ depending on the API. However, typical
documentation includes API descriptions, notably for routes
and parameters. The OpenAPI Specification [3] and Postman
Collection [5] describe their standard structures.

Moreover, we need to ensure that other researchers can
utilize the benchmark properly in their evaluations, with the
provided documentation. To do so, we provided an OpenAPI
Specification file in the JSON format for each API. We verified
the syntactical validity of such files using a JSON parser. We
also verified if the OAS provided in the files are valid, by
inserting them into the online Swagger Editor [4]. A similar
process is applied for APIs comprising a Postman Collection.

0%

25%

50%

75%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

PATCH DELETE PUT POST GET

Fig. 6. Stacked column chart of the HTTP method distribution (in percentages), for each REST API of the benchmark.

Benchmark Evolution. In order to properly maintain and
keep the benchmark up-to-date, we will routinely keep track
of REST APIs updates (e.g., new version/documentation). We
also envision a submission mechanism based on pull requests
and an automated verification of quality criteria. Moreover,
the repository contains a Issues page, for users to share their
insights/questions/issues regarding the benchmark.

OpenAPI Translation. An issue we encountered in RQ.5 is
that we could not directly find all OpenAPI Specifications for
the APIs, in the JSON format. Indeed, some APIs provided
machine-readable documentation, but not in an adequate for-
mat. First, some APIs provided an OAS in the YAML format.
To translate this into JSON, we used a tool [101] capable of
transforming a YAML file given as input into a JSON file
as output. Second, some API specifications were found on
Postman, which has its own documentation format. In this
case, we used P2O [102], a tool capable of converting a
Postman Collection into an OpenAPI Specification. We also
used a Postman collection to generate an OpenAPI schema
from a given Postman collection ID [103]. We used these two
tools to cross-check that the generated OpenAPI Specifications
are complete and equivalent in both cases. Finally, certain APIs
provided documentation through a Swagger interface (i.e., a
human-readable webpage equivalent for an OAS). For such
APIs, we had to explore/mine the API website by changing
routes and/or query parameters to find the machine-readable
equivalent version.

API Diversity and Structural Characteristics. Our work
focused on carefully selecting REST APIs, based on the
research papers filtered in our systematic mapping study. We
also carefully reported the API application domains and vari-
ous structural characteristics. This is an important discussion

element, as this process is preferred for external validity
[104], [105] compared to convenience sampling that is usually
applied.

Other HTTP Methods. We did not include four HTTP
methods in our evaluation (HEAD, CONNECT, OPTIONS,
and TRACE) due to their infrequent use in REST APIs. HEAD
is primarily used for retrieving headers without a response
body, CONNECT is mainly utilized for tunneling in proxy
connections, OPTIONS is used for discovering supported
HTTP methods, and TRACE serves diagnostic purposes.
Nonetheless, our benchmark still supports the retrieval of such
methods. Should these HTTP methods play a role in the future
APIs of our benchmark, we can add them easily as one of the
columns of Table VII.

VI. THREATS TO VALIDITY

Internal Validity. (1) The numbers associated with the struc-
tural characteristics of the benchmark APIs (e.g. the number
of routes and query parameters) might not be accurately
reported in our characteristics data. To mitigate this threat,
we explored the API websites multiple times to find the
related structural characteristics. We also developed a small
script to automatically report structural characteristics from
a given OpenAPI Specification (e.g., the number of routes,
query parameters, and HTTP methods of the API). (2) Our
selection of papers for the systematic mapping study might
not reflect the whole spectrum of available papers matching
our inclusion criteria. To mitigate this threat, we experimented
with different search strings and kept the one that yielded
the most relevant papers w.r.t. REST APIs. Then, we utilized
five different databases, compared the findings, and kept the
papers matching our criteria. We also used a snowballing

approach with saturation (no new studies were found in the
references). The whole process is further detailed in Section
III. (3) The OpenAPI Specifications and Postman Collections
provided in the GitHub repository are prone to deprecation (as
the REST APIs of the benchmark are subject to change in the
future), mistakes, or inaccuracies. To mitigate this threat, we
meticulously analyzed the online specifications, from different
sources, and kept the most complete ones. Our public GitHub
repository will be maintained and updated. (4) The tools
leveraged to translate a Postman documentation file into an
OAS file might contain bugs, leading to an invalid translation
containing missing elements and/or inaccuracies. To mitigate
such threat, we also provided the Postman Collection file for
the APIs that utilized such process, as a backup file to support
the generated OAS file.
External Validity. The REST APIs chosen for the benchmark
might not accurately reflect all public REST API types. To
mitigate this threat, we analyzed REST APIs in various re-
search papers (following a systematic mapping study), related
to REST APIs. We filtered the APIs found based on various
criteria, notably public availability, then computed various
structural characteristics and finally provided their OpenAPI
Specifications. Moreover, Table VI presents the wide range of
application domains for a subset of APIs found in our bench-
mark. However, since our search queries explicitly looked for
testing and documentation research, this may have influenced
the selection of APIs in our benchmark.
Construct Validity. Construct validity concerns the metrics
we chose to establish our conclusions. We focused on struc-
tural characteristics that serve as proxies for API complexity
(routes/number of parameters) and extended them with in-
formation useful for black-box/white-box testing such as rate
limit (e.g., for fuzzing tools). These characteristics are often
reported in the REST API literature (e.g., [8], [19], [27]). We
may consider additional metrics in the future.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented PRAB, an acronym for Public
REST API Benchmark. The main motivation of our research
was to fill a gap in the REST API literature, as no pub-
licly available benchmark of REST APIs exists, impelling
researchers to construct their own in each new study. Indeed,
API resources (e.g., websites and online documentation) often
lack direct access to (1) important structural characteristics of
the APIs (e.g., authentication method, rate limiting, number of
routes/parameters, HTTP methods) and (2) machine-readable
OpenAPI Specifications (in JSON/YAML format). Such re-
sources are important for testing practices, and user under-
standing purposes. Consequently, we conducted a systematic
mapping study to find the APIs that are used in the evaluations
of research papers/studies related to REST APIs, mainly in the
testing and documentation fields. Based on the actionable APIs
that were found, we constructed a comprehensive benchmark
containing documentation (OpenAPI/Postman formats) and
various structural characteristics (routes, query parameters,
authentication, HTTP methods, etc.) of 60 public REST APIs.

The benchmark is publicly available in our GitHub repository
[11].

In the future, we would like to keep PRAB up-to-date. To do
so, we will keep track of updates related to the REST APIs in
the benchmark, and update the GitHub repository accordingly.
Next, we would like to add more REST APIs to the bench-
mark, which could further help API testers and users. Finally,
we will add more data formats for each API of the benchmark,
such as a YAML version of the OpenAPI Specification (which
is currently in JSON), a Postman Collection for all APIs, and
additional structural characteristics that could assist REST API
researchers, developers, testers, and users alike.

REFERENCES

[1] R. T. Fielding, Architectural styles and the design of network-based
software architectures. Irvine, USA: University of California, Irvine,
2000.

[2] Spotify AB, “Spotify api,” https://developer.spotify.com, 2024, [Online;
Last Accessed 28-October-2024].

[3] L. Foundation, “Openapi specification,” https://www.openapis.org,
2022, [Online; Last Accessed 5-December-2024].

[4] S. Software, “Swagger editor,” https://editor.swagger.io, 2023, [Online;
Last Accessed 5-December-2024].

[5] Postman, “Create api documentation with postman,” https://www.
postman.com/api-documentation-tool, 2023, [Online; Last Accessed
19-January-2025].

[6] D. Corradini, A. Zampieri, M. Pasqua, and M. Ceccato, “Restats: A test
coverage tool for restful apis,” in 2021 IEEE International Conference
on Software Maintenance and Evolution (ICSME). IEEE, 2021, pp.
594–598.

[7] E. Viglianisi, M. Dallago, and M. Ceccato, “Resttestgen: Automated
black-box testing of restful apis,” in 2020 IEEE 13th International
Conference on Software Testing, Validation and Verification (ICST).
New York, USA: IEEE, 2020, pp. 142–152.

[8] D. Corradini, A. Zampieri, M. Pasqua, and M. Ceccato, “Empirical
comparison of black-box test case generation tools for restful apis,”
in 2021 IEEE 21st International Working Conference on Source Code
Analysis and Manipulation (SCAM). IEEE, 2021, pp. 226–236.

[9] M. Kim, T. Stennett, D. Shah, S. Sinha, and A. Orso, “Leveraging
large language models to improve rest api testing,” in Proceedings
of the 2024 ACM/IEEE 44th International Conference on Software
Engineering: New Ideas and Emerging Results, 2024, pp. 37–41.

[10] J. Ferrara, “Features service api,” https://github.com/JavierMF/features-
service, 2016, [Online; Last Accessed 22-October-2024].

[11] A. Decrop and S. Eraso, “Public rest api benchmark (prab),” https://
github.com/alixdecr/PRAB, 2025, [Online; Last Accessed 03-February-
2025].

[12] L. Richardson, M. Amundsen, and S. Ruby, RESTful Web APIs:
Services for a Changing World. Sebastopol, California: ”O’Reilly
Media, Inc.”, 2013.

[13] F. Florez and A. Matos, “Rest countries api,” https://restcountries.com,
2024, [Online; Last Accessed 28-October-2024].

[14] D. Thoennes, “Bored api,” https://github.com/drewthoennes/Bored-
API, 2020, [Online; Last Accessed 03-February-2025].

[15] J. Skoog, “An api of ice and fire,” https://anapioficeandfire.com, 2023,
[Online; Last Accessed 5-December-2024].

[16] S. Sohan, F. Maurer, C. Anslow, and M. P. Robillard, “A study of the
effectiveness of usage examples in rest api documentation,” in 2017
IEEE symposium on visual languages and human-centric computing
(VL/HCC). New York, USA: IEEE, 2017, pp. 53–61.

[17] H. Cao, J.-R. Falleri, and X. Blanc, “Automated generation of rest
api specification from plain html documentation,” in Service-Oriented
Computing: 15th International Conference, ICSOC 2017, Malaga,
Spain, November 13–16, 2017, Proceedings. Springer-Verlag GmbH,
Heidelberg: Springer, 2017, pp. 453–461.

[18] C. González-Mora, C. Barros, I. Garrigós, J. Zubcoff, E. Lloret, and
J.-N. Mazón, “Improving open data web api documentation through
interactivity and natural language generation,” Computer Standards &
Interfaces, vol. 83, p. 103657, 2023.

https://developer.spotify.com
https://www.openapis.org
https://editor.swagger.io
https://www.postman.com/api-documentation-tool
https://www.postman.com/api-documentation-tool
https://github.com/JavierMF/features-service
https://github.com/JavierMF/features-service
https://github.com/alixdecr/PRAB
https://github.com/alixdecr/PRAB
https://restcountries.com
https://github.com/drewthoennes/Bored-API
https://github.com/drewthoennes/Bored-API
https://anapioficeandfire.com

[19] M. Kim, D. Corradini, S. Sinha, A. Orso, M. Pasqua, R. Tzoref-Brill,
and M. Ceccato, “Enhancing rest api testing with nlp techniques,” in
Proceedings of the 32nd ACM SIGSOFT International Symposium on
Software Testing and Analysis. New York, NY: ACM, 2023, pp. 1232–
1243.

[20] S. M. Sohan, C. Anslow, and F. Maurer, “Spyrest: Automated restful api
documentation using an http proxy server (n),” in 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
New York, NY: IEEE, 2015, pp. 271–276.

[21] R. Yandrapally, S. Sinha, R. Tzoref-Brill, and A. Mesbah, “Carving
ui tests to generate api tests and api specification,” in Proceedings of
the 45th International Conference on Software Engineering, ser. ICSE
’23. New York, USA: IEEE Press, 2023, p. 1971–1982. [Online].
Available: https://doi.org/10.1109/ICSE48619.2023.00167

[22] J. Yang, E. Wittern, A. T. Ying, J. Dolby, and L. Tan, “Towards
extracting web api specifications from documentation,” in Proceedings
of the 15th International Conference on Mining Software Repositories.
New York, USA: ACM, 2018, pp. 454–464.

[23] H. Ed-Douibi, J. L. Cánovas Izquierdo, and J. Cabot, “Example-driven
web api specification discovery,” in European Conference on Modelling
Foundations and Applications. Springer-Verlag GmbH, Heidelberg:
Springer, 2017, pp. 267–284.

[24] R. Huang, M. Motwani, I. Martinez, and A. Orso, “Generating rest api
specifications through static analysis,” in Proceedings of the IEEE/ACM
46th International Conference on Software Engineering, 2024, pp. 1–
13.

[25] A. Ehsan, M. A. M. Abuhaliqa, C. Catal, and D. Mishra, “Restful api
testing methodologies: Rationale, challenges, and solution directions,”
Applied Sciences, vol. 12, no. 9, p. 4369, 2022.

[26] A. Sharma, M. Revathi et al., “Automated api testing,” in 2018
3rd International Conference on Inventive Computation Technologies
(ICICT). New York, USA: IEEE, 2018, pp. 788–791.

[27] A. Golmohammadi, M. Zhang, and A. Arcuri, “Testing restful apis: A
survey,” ACM Trans. Softw. Eng. Methodol., vol. 33, no. 1, nov 2023.
[Online]. Available: https://doi.org/10.1145/3617175

[28] J. C. Alonso, A. Martin-Lopez, S. Segura, J. M. Garcia, and A. Ruiz-
Cortes, “Arte: Automated generation of realistic test inputs for web
apis,” IEEE Transactions on Software Engineering, vol. 49, no. 1, pp.
348–363, 2022.

[29] V. Atlidakis, P. Godefroid, and M. Polishchuk, “Restler: Stateful rest
api fuzzing,” in 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE). New York, USA: IEEE, 2019, pp.
748–758.

[30] ——, “Checking security properties of cloud service rest apis,” in 2020
IEEE 13th International Conference on Software Testing, Validation
and Verification (ICST). New York, USA: IEEE, 2020, pp. 387–397.

[31] D. Corradini, M. Pasqua, and M. Ceccato, “Automated black-
box testing of mass assignment vulnerabilities in restful apis,”
in Proceedings of the 45th International Conference on Software
Engineering, ser. ICSE ’23. New York, USA: IEEE Press, 2023, p.
2553–2564. [Online]. Available: https://doi.org/10.1109/ICSE48619.
2023.00213

[32] P. Godefroid, B.-Y. Huang, and M. Polishchuk, “Intelligent rest api data
fuzzing,” in Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering. New York, USA: ACM, 2020, pp. 725–736.

[33] P. Godefroid, D. Lehmann, and M. Polishchuk, “Differential regression
testing for rest apis,” in Proceedings of the 29th ACM SIGSOFT
International Symposium on Software Testing and Analysis. New York,
USA: ACM, 2020, pp. 312–323.

[34] Z. Hatfield-Dodds and D. Dygalo, “Deriving semantics-aware fuzzers
from web api schemas,” in Proceedings of the ACM/IEEE 44th Interna-
tional Conference on Software Engineering: Companion Proceedings.
New York, USA: ACM/IEEE, 2022, pp. 345–346.

[35] S. Karlsson, A. Čaušević, and D. Sundmark, “Quickrest: Property-
based test generation of openapi-described restful apis,” in 2020 IEEE
13th International Conference on Software Testing, Validation and
Verification (ICST). New York, USA: IEEE, 2020, pp. 131–141.

[36] Y. Liu, Y. Li, G. Deng, Y. Liu, R. Wan, R. Wu, D. Ji, S. Xu,
and M. Bao, “Morest: model-based restful api testing with execution
feedback,” in Proceedings of the 44th International Conference on
Software Engineering. New York, USA: ACM/IEEE, 2022, pp. 1406–
1417.

[37] R. Mahmood, J. Pennington, D. Tsang, T. Tran, and A. Bogle, “A
framework for automated api fuzzing at enterprise scale,” in 2022 IEEE
Conference on Software Testing, Verification and Validation (ICST).
New York, USA: IEEE, 2022, pp. 377–388.

[38] A. Martin-Lopez, S. Segura, and A. Ruiz-Cortés, “Restest: automated
black-box testing of restful web apis,” in Proceedings of the 30th ACM
SIGSOFT International Symposium on Software Testing and Analysis.
New York, USA: ACM, 2021, pp. 682–685.

[39] S. Segura, J. A. Parejo, J. Troya, and A. Ruiz-Cortés, “Metamorphic
testing of restful web apis,” in Proceedings of the 40th International
Conference on Software Engineering. New York, USA: IEEE/ACM,
2018, pp. 882–882.

[40] H. Wu, L. Xu, X. Niu, and C. Nie, “Combinatorial testing of restful
apis,” in Proceedings of the 44th International Conference on Software
Engineering. New York, USA: ACM, 2022, pp. 426–437.

[41] A. Martin-Lopez, S. Segura, and A. Ruiz-Cortés, “Online testing of
restful apis: Promises and challenges,” in Proceedings of the 30th ACM
Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. New York, USA: ACM,
2022, pp. 408–420.

[42] O. Banias, , D. Florea, R. Gyalai, and D.-I. Curiac, “Automated
specification-based testing of rest apis,” Sensors, vol. 21, no. 16, p.
5375, 2021.

[43] S. Ahmed and A. Hamdy, “Artificial bee colony for automated black-
box testing of restful api,” in International Conference on Frontiers
of Intelligent Computing: Theory and Applications. Springer-Verlag
GmbH, Heidelberg: Springer, 2023, pp. 1–17.

[44] arcuri82, “Emb,” https://github.com/WebFuzzing/EMB, 2024, [Online;
Last Accessed 10-October-2024].

[45] A. Arcuri, “Evomaster,” https://github.com/WebFuzzing/EvoMaster,
2025, [Online; Last Accessed 03-February-2025].

[46] S. Di Meglio, L. L. L. Starace, and S. Di Martino, “Starting a new rest
api project? a performance benchmark of frameworks and execution
environments.” in IWSM-Mensura, 2023.

[47] A. Neumann, N. Laranjeiro, and J. Bernardino, “An analysis of public
rest web service apis,” IEEE Transactions on Services Computing,
vol. 14, no. 4, pp. 957–970, 2018.

[48] D. Bermbach and E. Wittern, “Benchmarking web api quality-
revisited,” Journal of Web Engineering, vol. 19, no. 5-6, pp. 603–646,
2020.

[49] D. Amoroso d’Aragona, A. Bakhtin, X. Li, R. Su, L. Adams,
E. Aponte, F. Boyle, P. Boyle, R. Koerner, J. Lee et al., “A dataset
of microservices-based open-source projects,” in Proceedings of the
21st International Conference on Mining Software Repositories, 2024,
pp. 504–509.

[50] APIs.guru, “Apis.guru,” https://apis.guru, 2025, [Online; Last Accessed
03-February-2025].

[51] public-apis, “Public apis,” https://github.com/public-apis/public-apis,
2025, [Online; Last Accessed 03-February-2025].

[52] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, “Systematic map-
ping studies in software engineering,” in 12th international conference
on evaluation and assessment in software engineering (EASE). BCS
Learning & Development, 2008.

[53] C. R. . Education, “Icore conference portal,” https://portal.core.edu.au/
conf-ranks, 2023, [Online; Last Accessed 18-October-2024].

[54] LanguageTool, “Languagetool api,” https://languagetool.org/http-api,
2024, [Online; Last Accessed 24-October-2024].

[55] F. Sousa, M. Goncalves, and D. Caldas, “Proxyprint kitchen api,”
https://github.com/ProxyPrint/proxyprint-kitchen, 2016, [Online; Last
Accessed 28-October-2024].

[56] J. C. Alonso, S. Segura, and A. Ruiz-Cortés, “Agora: automated
generation of test oracles for rest apis,” in Proceedings of the 32nd ACM
SIGSOFT International Symposium on Software Testing and Analysis,
2023, pp. 1018–1030.

[57] J. C. Alonso, “Automated generation of test oracles for restful apis,”
in Proceedings of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineer-
ing, 2022, pp. 1808–1810.

[58] A. Arcuri, “Restful api automated test case generation with evomas-
ter,” ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 28, no. 1, pp. 1–37, 2019.

[59] B. Marculescu, M. Zhang, and A. Arcuri, “On the faults found in rest
apis by automated test generation,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 31, no. 3, pp. 1–43, 2022.

https://doi.org/10.1109/ICSE48619.2023.00167
https://doi.org/10.1145/3617175
https://doi.org/10.1109/ICSE48619.2023.00213
https://doi.org/10.1109/ICSE48619.2023.00213
https://github.com/WebFuzzing/EMB
https://github.com/WebFuzzing/EvoMaster
https://apis.guru
https://github.com/public-apis/public-apis
https://portal.core.edu.au/conf-ranks
https://portal.core.edu.au/conf-ranks
https://languagetool.org/http-api
https://github.com/ProxyPrint/proxyprint-kitchen

[60] M. Zhang and A. Arcuri, “Open problems in fuzzing restful apis: A
comparison of tools,” ACM Transactions on Software Engineering and
Methodology, vol. 32, no. 6, pp. 1–45, 2023.

[61] O. Sahin and B. Akay, “A discrete dynamic artificial bee colony with
hyper-scout for restful web service api test suite generation,” Applied
Soft Computing, vol. 104, p. 107246, 2021.

[62] M. Zhang, B. Marculescu, and A. Arcuri, “Resource and dependency
based test case generation for restful web services,” Empirical Software
Engineering, vol. 26, no. 4, p. 76, 2021.

[63] D. Stallenberg, M. Olsthoorn, and A. Panichella, “Improving test
case generation for rest apis through hierarchical clustering,” in 2021
36th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2021, pp. 117–128.

[64] M. Kim, Q. Xin, S. Sinha, and A. Orso, “Automated test generation
for rest apis: No time to rest yet,” in Proceedings of the 31st ACM
SIGSOFT International Symposium on Software Testing and Analysis,
2022, pp. 289–301.

[65] A. Martin-Lopez, S. Segura, and A. Ruiz-Cortés, “Test coverage criteria
for restful web apis,” in Proceedings of the 10th ACM SIGSOFT
International Workshop on Automating TEST Case Design, Selection,
and Evaluation, 2019, pp. 15–21.

[66] S. Karlsson, R. Jongeling, A. Čaušević, and D. Sundmark, “Exploring
behaviours of restful apis in an industrial setting,” Software Quality
Journal, vol. 32, no. 3, pp. 1287–1324, 2024.

[67] C. B. Burlò, A. Francalanza, A. Scalas, and E. Tuosto, “Cots: Con-
nected openapi test synthesis for restful applications,” in International
Conference on Coordination Models and Languages. Springer, 2024,
pp. 75–92.

[68] A. Martin-Lopez, S. Segura, and A. Ruiz-Cortés, “Restest: Black-box
constraint-based testing of restful web apis,” in Service-Oriented Com-
puting: 18th International Conference, ICSOC 2020, Dubai, United
Arab Emirates, December 14–17, 2020, Proceedings 18. Springer,
2020, pp. 459–475.

[69] A. G. Mirabella, A. Martin-Lopez, S. Segura, L. Valencia-Cabrera, and
A. Ruiz-Cortés, “Deep learning-based prediction of test input validity
for restful apis,” in 2021 IEEE/ACM Third International Workshop on
Deep Learning for Testing and Testing for Deep Learning (DeepTest).
IEEE, 2021, pp. 9–16.

[70] A. Martin-Lopez, A. Arcuri, S. Segura, and A. Ruiz-Cortés, “Black-box
and white-box test case generation for restful apis: Enemies or allies?”
in 2021 IEEE 32nd International Symposium on Software Reliability
Engineering (ISSRE). IEEE, 2021, pp. 231–241.

[71] ——, “Black-box and white-box test case generation for restful apis:
Enemies or allies?” in 2021 IEEE 32nd International Symposium on
Software Reliability Engineering (ISSRE). IEEE, 2021, pp. 231–241.

[72] A. Decrop, G. Perrouin, M. Papadakis, X. Devroey, and P.-Y.
Schobbens, “You can rest now: Automated specification inference and
black-box testing of restful apis with large language models,” arXiv
preprint arXiv:2402.05102, 2024.

[73] A. Tokos, “Evaluating fuzzing tools for automated testing of rest apis
using openapi specification,” 2023.

[74] A. Karlsson, “Automatic test generation of rest apis,” 2020.
[75] A. Arcuri, M. Zhang, and J. Galeotti, “Advanced white-box heuristics

for search-based fuzzing of rest apis,” ACM Transactions on Software
Engineering and Methodology, vol. 33, no. 6, pp. 1–36, 2024.

[76] Amadeus, “Amadeus hotel api,” https://developers.amadeus.com/self-
service/category/hotels, 2024, [Online; Last Accessed 22-October-
2024].

[77] A. Kops, “Catwatch api,” https://github.com/zalando-incubator/
catwatch, 2017, [Online; Last Accessed 22-October-2024].

[78] Deutsche Telekom AG, “Cwa verification server api,” https://github.
com/corona-warn-app/cwa-verification-server, 2023, [Online; Last Ac-
cessed 22-October-2024].

[79] D. Bernier, J. Nimety, and T. Reznick, “Fdic api,” https://github.
com/ContinuityControl/fdic, 2020, [Online; Last Accessed 22-October-
2024].

[80] Foursquare, “Foursquare api,” https://docs.foursquare.com/developer,
2024, [Online; Last Accessed 22-October-2024].

[81] Memorial Sloan Kettering Cancer Center, “Genome nexus api,” https:
//docs.genomenexus.org/api, 2024, [Online; Last Accessed 22-October-
2024].

[82] V. Padilha de Vargas, D. Negrisoli Batista, and L. Wlach, “Gestao
hospital api,” https://github.com/ValchanOficial/GestaoHospital, 2019,
[Online; Last Accessed 22-October-2024].

[83] GitHub, “Github api,” https://docs.github.com/rest, 2024, [Online; Last
Accessed 22-October-2024].

[84] Marvel, “Marvel api,” https://developer.marvel.com, 2024, [Online;
Last Accessed 24-October-2024].

[85] S. Alexei and P. Mihai, “Open contracting vietnam (ocvn) api,”
https://github.com/devgateway/ocvn, 2017, [Online; Last Accessed 24-
October-2024].

[86] HeiGIT gGmbH, “Ohsome api,” https://docs.ohsome.org/ohsome-api,
2024, [Online; Last Accessed 25-October-2024].

[87] B. Fritz, “Omdb api,” https://www.omdbapi.com, 2019, [Online; Last
Accessed 28-October-2024].

[88] A. Rey, V. Fedoriv, A. Touret, and et al., “Spring petclinic rest api,”
https://github.com/spring-petclinic/spring-petclinic-rest, 2024, [Online;
Last Accessed 28-October-2024].

[89] F. Tumanischvili, M. Rychel, and et al., “Swagger petstore sample
api,” https://github.com/swagger-api/swagger-petstore, 2024, [Online;
Last Accessed 28-October-2024].

[90] L. Jakob and et al., “Realworld example app api,” https://github.com/
lujakob/nestjs-realworld-example-app, 2021, [Online; Last Accessed
28-October-2024].

[91] A. Arcuri, “Rest ncs api,” https://github.com/WebFuzzing/EMB/tree/
master/jdk 8 maven/cs/rest/artificial/ncs, 2024, [Online; Last Accessed
28-October-2024].

[92] ——, “Rest news api,” https://github.com/WebFuzzing/EMB/tree/
master/jdk 8 maven/cs/rest/artificial/news, 2024, [Online; Last Ac-
cessed 28-October-2024].

[93] ——, “Rest scs api,” https://github.com/WebFuzzing/EMB/tree/master/
jdk 8 maven/cs/rest/artificial/scs, 2024, [Online; Last Accessed 28-
October-2024].

[94] ——, “Scout api,” https://github.com/WebFuzzing/EMB/tree/master/
jdk 8 maven/cs/rest/original/scout-api, 2021, [Online; Last Accessed
28-October-2024].

[95] Stripe, “Stripe api,” https://docs.stripe.com/api, 2024, [Online; Last
Accessed 28-October-2024].

[96] Tumblr Inc., “Tumblr api,” https://www.tumblr.com/docs/en/api/v2,
2024, [Online; Last Accessed 28-October-2024].

[97] Yelp Inc., “Yelp api,” https://docs.developer.yelp.com/, 2024, [Online;
Last Accessed 28-October-2024].

[98] Google LLC, “Youtube api,” https://developers.google.com/youtube,
2024, [Online; Last Accessed 28-October-2024].

[99] sonallux, “Openapi/swagger description for the web api,”
https://community.spotify.com/t5/Spotify-for-Developers/OpenApi-
Swagger-description-for-the-Web-API/td-p/5196705, 2021, [Online;
Last Accessed 28-October-2024].

[100] ——, “Spotify web api tools,” https://github.com/sonallux/spotify-web-
api, 2021, [Online; Last Accessed 28-October-2024].

[101] Browserling, “Transform yaml into json,” https://onlineyamltools.com/
convert-yaml-to-json, 2024, [Online; Last Accessed 05-November-
2024].

[102] A. Goyal, “Postman to openapi,” https://p2o.defcon007.com, 2023,
[Online; Last Accessed 05-November-2024].

[103] Postman, “Generate an openapi schema,” https://www.postman.
com/postman/405e0480-49cf-463b-8052-6c0d05a8e8f3/request/
l9w7uk2/generate-an-openapi-schema, 2024, [Online; Last Accessed
06-November-2024].

[104] K. Petersen and C. Gencel, “Worldviews, research methods, and their
relationship to validity in empirical software engineering research,” in
2013 joint conference of the 23rd international workshop on software
measurement and the 8th international conference on software process
and product measurement. IEEE, 2013, pp. 81–89.

[105] A. Arcuri and L. Briand, “A hitchhiker’s guide to statistical tests for
assessing randomized algorithms in software engineering,” Software
Testing, Verification and Reliability, vol. 24, no. 3, pp. 219–250, 2014.

https://developers.amadeus.com/self-service/category/hotels
https://developers.amadeus.com/self-service/category/hotels
https://github.com/zalando-incubator/catwatch
https://github.com/zalando-incubator/catwatch
https://github.com/corona-warn-app/cwa-verification-server
https://github.com/corona-warn-app/cwa-verification-server
https://github.com/ContinuityControl/fdic
https://github.com/ContinuityControl/fdic
https://docs.foursquare.com/developer
https://docs.genomenexus.org/api
https://docs.genomenexus.org/api
https://github.com/ValchanOficial/GestaoHospital
https://docs.github.com/rest
https://developer.marvel.com
https://github.com/devgateway/ocvn
https://docs.ohsome.org/ohsome-api
https://www.omdbapi.com
https://github.com/spring-petclinic/spring-petclinic-rest
https://github.com/swagger-api/swagger-petstore
https://github.com/lujakob/nestjs-realworld-example-app
https://github.com/lujakob/nestjs-realworld-example-app
https://github.com/WebFuzzing/EMB/tree/master/jdk_8_maven/cs/rest/artificial/ncs
https://github.com/WebFuzzing/EMB/tree/master/jdk_8_maven/cs/rest/artificial/ncs
https://github.com/WebFuzzing/EMB/tree/master/jdk_8_maven/cs/rest/artificial/news
https://github.com/WebFuzzing/EMB/tree/master/jdk_8_maven/cs/rest/artificial/news
https://github.com/WebFuzzing/EMB/tree/master/jdk_8_maven/cs/rest/artificial/scs
https://github.com/WebFuzzing/EMB/tree/master/jdk_8_maven/cs/rest/artificial/scs
https://github.com/WebFuzzing/EMB/tree/master/jdk_8_maven/cs/rest/original/scout-api
https://github.com/WebFuzzing/EMB/tree/master/jdk_8_maven/cs/rest/original/scout-api
https://docs.stripe.com/api
https://www.tumblr.com/docs/en/api/v2
https://docs.developer.yelp.com/
https://developers.google.com/youtube
https://community.spotify.com/t5/Spotify-for-Developers/OpenApi-Swagger-description-for-the-Web-API/td-p/5196705
https://community.spotify.com/t5/Spotify-for-Developers/OpenApi-Swagger-description-for-the-Web-API/td-p/5196705
https://github.com/sonallux/spotify-web-api
https://github.com/sonallux/spotify-web-api
https://onlineyamltools.com/convert-yaml-to-json
https://onlineyamltools.com/convert-yaml-to-json
https://p2o.defcon007.com
https://www.postman.com/postman/405e0480-49cf-463b-8052-6c0d05a8e8f3/request/l9w7uk2/generate-an-openapi-schema
https://www.postman.com/postman/405e0480-49cf-463b-8052-6c0d05a8e8f3/request/l9w7uk2/generate-an-openapi-schema
https://www.postman.com/postman/405e0480-49cf-463b-8052-6c0d05a8e8f3/request/l9w7uk2/generate-an-openapi-schema

	Introduction
	Background and Related Work
	REST APIs
	REST API Documentation
	Black-Box REST API Testing
	REST API Benchmarks

	Approach
	Research Questions
	Search Strategy
	Relevant Papers
	Keywording
	Data Extraction and Analysis

	Evaluation
	RQ.1 - Research Papers with REST API Evaluations
	RQ.2 - REST APIs Used in the Literature
	RQ.3 - Actionable REST APIs for the Benchmark
	RQ.4 - Structural Characteristics of the REST APIs
	RQ.5 - OpenAPI Specifications of the REST APIs

	Discussion
	Threats to Validity
	Conclusion and Future Work
	References

