
FETT: Fault Injection as an Educational and
Training Tool in Cybersecurity

Anaé De Baets∗, Guillaume Nguyen∗ , Xavier Devroey∗ , and Fabian Gilson†
∗NADI, Computer Science Faculty, University of Namur, Namur, Belgium.

Emails: anae.debaets@student.unamur.be, guillaume.nguyen@unamur.be, xavier.devroey@unamur.be
†Computer Science and Software Engineering, University of Canterbury, New Zealand.

Email: fabian.gilson@canterbury.ac.nz

Abstract—In this paper, we present FETT, a fault injection tool
for educational and training purposes addressed to educators
and students in cybersecurity. Our tool aims to analyze and
inject vulnerabilities into existing Django web applications for
educational purposes. Indeed, security education often relies
on either abstract theoretical instruction or overly simplistic
examples. This tool bridges the gap between theory and practice
by modifying real web applications in a targeted, reproducible
way. With its user-friendly interface and modular vulnerability
injection, instructors can create challenges tailored to specific
learning goals, while students engage directly with code that
simulates production-level vulnerabilities. We evaluated FETT
based on five publicly available GitHub projects and six student
projects from the last three academic years (2022-2024). We
successfully managed to efficiently inject vulnerabilities inspired
by the OWASP top 10:2021 while keeping the core functionalities
of the target application operational. The project is publicly avail-
able at https://gitlab.com/fabgilson/django-vulnerability-injector.
A demonstration is available at https://youtu.be/ZYQs2vLzbyE.

Index Terms—cybersecurity, education, OWASP, vulnerability
injection, Django, web application security

I. INTRODUCTION

There is a growing need for realistic, hands-on environments
where learners can safely explore web vulnerabilities for
cybersecurity education and training [1]. Manually creating
these environments is often resource-intensive and requires
significant technical expertise. To address this, our tool in-
troduces a vulnerable web application configurator: a system
designed to modify an existing web application by injecting
known vulnerabilities based on user-selected criteria.

Rather than generating an application from scratch, FE-
TT takes a pre-existing, functioning web application that it
systematically alters to include specific vulnerabilities from

This research was supported by the CyberExcellence by DigitalWallonia
project (No. 2110186), funded by the Public Service of Wallonia (SPW
Recherche).

This is the authors’ version. The final version is accepted for publication
in the Proceedings of the 40th IEEE/ACM International Conference on
Automated Software Engineering, ASE 2025, Seoul, South Korea.

©2025 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, including reprinting/republishing
this material for advertising or promotional purposes, collecting new
collected works for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

the Open Worldwide Application Security Project (OWASP)
top 10:2021 [2]. The OWASP publishes a regularly updated
list of the ten most critical web application security risks.
This approach ensures that the resulting application maintains
realistic structure and behavior while incorporating security
flaws that are both realistic and educationally meaningful.

FETT seeks to replace the manual process of creating a new
vulnerable web application for each new training, to ensure
that the training material remains fresh, relevant, and effective
for each cohort. This process is not only time-consuming but
also difficult to scale and maintain consistently. Our goal is
to streamline and automate the generation of training environ-
ments by modifying an existing web application and injecting
vulnerabilities into it. This significantly reduces the instructor’s
workload while introducing flexibility and modularity into how
vulnerabilities are introduced and managed.

By allowing users to select specific OWASP vulnerabilities
and automatically apply them to a known codebase, FETT
enables faster setup of new training scenarios without com-
promising on educational value. It also allows for consistent
quality and structure across course iterations, while maintain-
ing the ability to introduce variation from cohort to cohort.

Ultimately, FETT supports the broader objective of making
cybersecurity education more efficient, scalable, and engaging,
benefiting both instructors and students.

The paper is structured as follows: Section II describes
the background and motivation for the development of FETT.
Then, in section III, we lay out the architecture of our tool,
and in section IV, we evaluate the performance of our tool.
Last, we discuss the limitations of our tool and conclude.

II. BACKGROUND & MOTIVATION

In this section, we discuss the requirements of FETT
following the more thorough analysis presented by De Baets
[3] in reviewing the current literature on existing practices
for integrating automated security simulation and automated
vulnerability injection for educational programs. We report the
key findings in four main categories.

a) Automation and Dynamic Adaptation: This is the
most explored automation technique in cybersecurity exer-
cises, particularly using automated vulnerability injection tools
and dynamic code adaptation. These systems were shown to

https://orcid.org/0000-0002-9724-6634
https://orcid.org/0000-0002-0831-7606
https://orcid.org/0000-0002-1465-3315
https://gitlab.com/fabgilson/django-vulnerability-injector
https://youtu.be/ZYQs2vLzbyE


significantly improve the flexibility and scalability of cyberse-
curity training environments [4].

b) Code Generation for Security Simulation: Papers that
addressed code generation emphasized the importance of real-
time code adaptation in training simulations. Tools designed
for generating dynamic security configurations allowed for
more personalized and responsive training experiences [5].

c) Security Testing Parametrization: A subset of pa-
pers focused on generating and parametrizing security testing
scenarios. These tools allowed for the customization of test
conditions, making it easier to tailor cybersecurity exercises
to various skill levels and security challenges [4]–[8].

d) Cybersecurity Training Platforms: Several papers dis-
cussed designing and implementing comprehensive training
platforms that integrate multiple security scenarios, from sim-
ple attacks to complex multi-layered threats. These platforms
were highly valued for their ability to provide immersive,
hands-on experiences [6], [7]. FETT’s objective is to offer
the same learning experience for cybersecurity assessment
material.

e) Summary: Existing research highlights the rapid evo-
lution of cybersecurity training, particularly in automation,
scenario generation, vulnerability injection, and adaptive learn-
ing. These advancements provide both insights and demon-
strate interest in developing a system that dynamically gener-
ates vulnerable web apps for training purposes.

f) Our solution: While configuration-based automation
ensures repeatability and ease of deployment, our system
extends beyond static templates by integrating dynamic sce-
nario generation, leveraging techniques similar to those in
CYEXEC* [9] and SECGEN [8], to inject randomized yet
controlled vulnerabilities. This approach aligns with the trend
toward variability and individualization, addressing limitations
of rigidity seen in configuration-only systems.

Furthermore, incorporating elements from model-driven and
DSL-based systems, such as those discussed in CRACK [10]
and ASL [11], informs the structured backend of our genera-
tor, ensuring consistency in how vulnerabilities are described
and deployed. However, unlike these formalized systems, our
goal is to abstract away the complexity, offering an intuitive
interface for non-experts to create unique training instances.

Ultimately, the system we are building synthesizes key
strengths from existing methods: automation, dynamic gen-
eration, and customization. We aim at overcoming their lim-
itations by prioritizing usability and flexibility to contribute
to the next generation of cybersecurity training tools, em-
powering educators and learners with accessible, on-demand,
realistic training environments.

III. ARCHITECTURE

In this section, we lay out the user interaction flow, the
key components of the system implementation, the details of
the environment setup, the configuration interface, the code
parsing and transformation process, and an example use case
to demonstrate the system’s capabilities. Fig. 1 shows the high-
level architecture.

GUIUser Core Engine

Injection Modules

(1) Form (2) Configuration

(3) Trigger
Target Django App

(4) Inject

(5) Report

Fig. 1. The high-level architecture of FETT.

Targeting Django applications for vulnerability injection is
driven by the framework’s popularity, well-defined structure,
and everyday use in educational and industry contexts. Never-
theless, several key technological constraints shaped the tool’s
design, such as the framework rigidity, preserving the code
integrity (e.g., formatting, comments, syntactic correctness),
and the fact that FETT assumes a conventional Django layout.
Projects with custom structures may require manual adap-
tation. Despite these constraints, focusing on Django allows
the tool to automate a previously manual and repetitive task
while ensuring the resulting applications remain pedagogically
valuable and functionally stable.

To structure these injections meaningfully and consistently,
the tool is based on the OWASP top 10:2021 vulnerability
list, a widely recognized list of the most critical categories
of web application security risks, such as SQL injection,
authentication failures, and logging failures. Users interact
with the tool via a graphical interface, where they can se-
lectively introduce vulnerabilities corresponding to OWASP
categories. By simulating real-world flaws in a systematic and
replicable manner, the tool supports hands-on learning in a
safe, contained environment.

A. Graphical User Interface

The configuration interface, item (1) in Fig. 1, offers a
user-friendly platform for customizing vulnerability injection
as shown in Fig. 2. The user can select any category and
configure the vulnerability to inject. The user can also load a
configuration file from prior injections.

B. Input Handling

We use Python 3.12.3 for its flexibility in text parsing,
file handling, and web and testing frameworks integration. For
the back-end development, (2) in Fig. 1, form submissions
management, server-side logic, and file processing, we use
Django 5.2.1. Upon submission, all inputs are validated on
the server side. Missing or invalid entries, such as unsup-
ported file types or empty application paths, trigger descriptive
error messages. The form supports multiple vulnerabilities
and transformation options. For specific vulnerabilities like
Server-Side Request Forgery (SSRF), the system restricts the



Fig. 2. A screenshot of the user interface of FETT.

Before:
user = auth.authenticate(

username=username,
password=password)

After:
connection = sqlite3.connect(’db.sqlite3’)
cursor = connection.cursor()
cursor.execute(

f"SELECT *
FROM auth_user
WHERE username = ’{username}’
AND password = ’{password}’")

user_login = cursor.fetchall()
user_login = User.objects.get(username = username)

Fig. 3. An example of vulnerability injection (A03 Code Injection)

upload to a valid Python file to ensure compatibility with the
overridden injection.

C. Code Parsing and Injection with LibCST

The core functionality of the system relies on LibCST
1.7.0, a Concrete Syntax Tree (CST) parser, enabling pre-
cise parsing and transformation of Python source code while
preserving formatting, structure, and syntactical correctness.
This ensures that vulnerability injection, (3) and (4) in Fig.
1, does not compromise code integrity and preserves the
code structure, including comments. Tab. I lists the different
vulnerabilities supported by FETT. Each vulnerability A01
to A10 can be injected in various ways. To support this,
FETT defines (up to) three different variants for the same
vulnerability.

Example: In Fig. 3, FETT looks for a call to the secure
authenticate() method and replaces it with an unsecured call
using a formatted string (f String) vulnerable to SQL
injection. This example is A03 Code Injection vulnerability
and shows the capability of one of the three variants. The
two other variants inject code vulnerable to cross-site scripting
(XSS) attacks by using unescaped HTML code, or unsafe
usages of Django’s render() function. The detailed list and
descriptions of injectors are available in [3].

D. Report, Resulting App and Feedback

The interface streamlines the configuration process, making
it accessible even to non-technical users. By abstracting away

the complexity of code transformation, the system enables
safe, customizable vulnerability injection with minimal effort.
After processing, a report is generated, see item (5) in Fig. 1, In
this report, the system provides the following feedback: (i) a
success page with a summary of the vulnerabilities chosen,
their parameters, and warning messages about unsuccessful
applications, if any; (ii) a download link to a ZIP archive
containing a vulnerability_config.json file detail-
ing the applied modifications and, if applicable, the python
file containing the overridden function (for SSRF injection).
All changes are applied to the supplied code in place. In case
of errors (e.g., invalid path), a contextual error page is shown
to help users correct the issues.

IV. EVALUATION

We performed a preliminary evaluation of FETT using
Django-based applications with varied sizes and complexity.
We focus on effectiveness by looking at injections that could
be applied, and efficiency by looking at duration and system
resource consumption. We applied FETT on five open-source
projects from GitHub, and six student submissions from pre-
vious coursework at the University of Canterbury.

a) Benchmark Selection: Candidate open-source reposi-
tories were identified using GitHub’s search and filter func-
tionality, prioritizing the following criteria: (i) more than 100
stars used as a proxy for code quality; (ii) last updated in 2020
or later; (iii) a modest repository size, i.e. ≤ 25 files and ≤
100 average lines of code per file, to allow manual testing
of existing functionality post-injection within reasonable time
and resource constraints.

The selected open-source projects are Django React Ecom-
merce,1 Django Web-App,2 Django Social Media Web-
site,3 Versity,4 and Dwitter.5 Despite having only a single
GitHub star at the time of selection, we included the Versity
project due to its clear structure and development activity.
The remaining applications were drawn from a university-
level cybersecurity course, where students were tasked with
identifying and fixing vulnerabilities in instructor-provided
Django applications, which purposefully contained OWASP
vulnerabilities. Two of the highest-graded fixed submissions
were selected from each of the last three academic years
(2022-2024). This ensured the inclusion of purpose-built and
secured codebases, matching the typical size of assessments
targeted by FETT. For each project, the number of files ranged
from 13 to 21, the average number of lines per file ranged
from 28.5 to 87.3, and all presented sufficient architectural
complexity for educational apps.

b) Effectiveness: We manually inspected the different
projects to analyze FETT’s effectiveness. Tab. I reports the
number of successful injections for all projects.

1https://github.com/justdjango/django-react-ecommerce
2https://github.com/smahesh29/Django-WebApp
3https://github.com/tomitokko/django-social-media-website
4https://github.com/emhash/Versity-Class-Management-System
5https://github.com/lionleaf/dwitter

https://github.com/justdjango/django-react-ecommerce
https://github.com/smahesh29/Django-WebApp
https://github.com/tomitokko/django-social-media-website
https://github.com/emhash/Versity-Class-Management-System
https://github.com/lionleaf/dwitter


TABLE I
SUCCESSFULLY INJECTED VULNERABILITIES.

OWASP Category Vulnerability #

A01 Broken access control no check admin page 0
A01 Broken access control remove login_required 10
A02 Cryptographic failure replace secret key 11
A02 Cryptographic failure plain text passwords 6
A03 Injection replace with raw SQL 9
A03 Injection unescaped HTML - XSS 6
A03 Injection unsafe render() 2
A04 Insecure design unchecked password change 4
A04 Insecure design unsafe get_object() 10
A04 Insecure design unsafe ObjectDoesNotExist 1
A05 Security misconfig. enable debug mode 7
A05 Security misconfig. allow all hosts 7
A05 Security misconfig. default admin console 3
A06 Vulnerable components downgrade libraries 11
A07 Authentication failure remove decorators 5
A07 Authentication failure remove password validation 5
A08 Data integrity failure remove upload validation 0
A08 Data integrity failure remove form validation 9
A09 Logging failure remove log statements 6
A09 Logging failure make logs public 6
A09 Logging failure log leak 9
A10 SSRF inject custom script 11

A02.replace-secret-key, A06.downgrade-libraries, and A10.-
SSRF could be injected into all 11 projects. Typical pro-
gramming mistakes, such as A03.SQL-injection, A03.XSS,
A08.form-validation, and A09.log-leak could be injected
into most projects. Only A01.admin-page and A08.upload-
validation could not be injected into any of the projects.
During our manual analysis, we observed that unfeasible
injections were primarily due to architectural incompatibilities
(e.g., non-standard access control, no file upload) or missing
prerequisites in the codebase (e.g., no admin panel, no access
controls). Despite Django’s structural constraints, we noticed
that open-source projects do not always follow the prescribed
architecture style, leading to more non-applicable cases: 45
injections could be applied to the five open-source projects (9
per project on average, 41%). In contrast, 93 could be applied
to the students’ projects (15.5 per project on average, 70%).

Last, we manually tested the applications after injection
from manual test cases gathered pre-injection. No critical
failures preventing the regular usage of the app were observed
post-injection. This confirms that FETT preserves the applica-
tions’ integrity while introducing vulnerabilities, fulfilling its
role as an instructor-facing tool for preparing stable, deliber-
ately insecure applications for student assessments.

c) Efficiency: FETT’s performance was measured in
terms of total and average processing time per file, which
ranged from 0.47s to 1.61s per file and from 8.45s to 24.20s
per project. The hardware conditions under which the mea-
surements were taken include a Z2 Tower G9 workstation
equipped with an Intel Core i7-13700 CPU, 32GB of RAM,
1TB NVMe SSD, and an NVIDIA RTX 4070 GPU with
12GB of VRAM. Resource usage metrics, including CPU
time and memory footprint, were monitored throughout the
injection process. With a resident set size staying under 71MB

and CPU usage not exceeding 2.94s, our results demonstrate
that FETT remained lightweight and did not incur significant
computational overhead.

V. CONCLUSION AND FUTURE WORK

We developed FETT with a clear educational objective:
to facilitate hands-on cybersecurity training by lowering the
barrier to creating realistic, vulnerable web applications. Tra-
ditional training methods often involve synthetic examples
that lack realism or highly customized applications that are
costly to produce and maintain. Our tool balances realism
and ease-of-use by modifying functional Django applications
to include targeted vulnerabilities, selected by the educator.
Our preliminary evaluation demonstrates that the tool performs
efficiently on projects of varied complexity, with high coverage
of many OWASP vulnerabilities without any impact on the
application’s stability.

Future work includes improving the FETT to extend the
support to non-standard Django applications, extending the
injection to non-Python files, and automating the post-injection
vulnerability validation (now done manually). We also intend
to improve the configurability of the injectors to add a prob-
ability for applications. This enables the rapid generation of
several vulnerable versions from the same Django application
for a classroom. We also plan to run a full-scale evaluation of
FETT, both on its vulnerability injection ability to precisely
identify the current limitations of the static analyses used in
the injectors and its impact on cybersecurity education. For
the former, we intend to extend our current benchmark to
larger Django applications and follow a similar evaluation
method. For the latter, we will devise a longitudinal study
with educators to understand the impact of FETT on their
pedagogical approach and students’ learning.

REFERENCES

[1] M. Bishop, D. Burley, S. Buck, J. J. Ekstrom, L. Futcher, D. Gibson,
E. K. Hawthorne, S. Kaza, Y. Levy, H. Mattord, and A. Parrish,
Cybersecurity Curricular Guidelines. Springer International Publishing,
2017, p. 3–13.

[2] OWASP, “OWASP Top 10:2021,” https://owasp.org/Top10/, (last visit
08/07/2025).

[3] A. De Baets, “Automated vulnerability injection in web applications: A
tool to support cybersecurity education,” Master’s thesis, University of
Namur, Namur, Belgium, 2025.

[4] M. Malone, Y. Wang, and F. Monrose, “An online gamified learning plat-
form for teaching cybersecurity and more,” in Proceedings of the 22nd
Annual Conference on Information Technology Education. Association
for Computing Machinery, 2021, pp. 29–34.

[5] M. Benzi, G. Lagorio, and M. Ribaudo, “Automatic challenge generation
for hands-on cybersecurity training,” in 2022 IEEE European Symposium
on Security and Privacy Workshops (EuroS&PW), 2022, pp. 496–503.

[6] W. H. Ang, H. Guo, and E. G. Chekole, “Vulngen: Vulnerable virtual
machine generator,” in 2023 IEEE International Conference on Service
Operations and Logistics, and Informatics (SOLI), 2023, pp. 1–8.

[7] C. Justice and R. Vyas, “Cybersecurity education: Runlabs rapidly create
virtualized labs based on a simple configuration file,” in ASEE Annual
Conference and Exposition, Conference Proceedings, 06 2017.

[8] Z. C. Schreuders, T. Shaw, M. Shan-A-Khuda, G. Ravichandran,
J. Keighley, and M. Ordean, “Security scenario generator (SecGen): A
framework for generating randomly vulnerable rich-scenario VMs for
learning computer security and hosting CTF events,” in 2017 USENIX
Workshop on Advances in Security Education (ASE 17), 2017.

https://owasp.org/Top10/


[9] R. Nakata and A. Otsuka, “Cyexec*: A high-performance container-
based cyber range with scenario randomization,” IEEE Access, vol. 9,
pp. 109 095–109 114, 2021.

[10] E. Russo, G. Costa, and A. Armando, “Building next generation cyber
ranges with crack,” Computers & Security, vol. 95, p. 101837, 2020.

[11] S. Arshad, M. Alam, S. Al-Kuwari, and M. H. A. Khan, “Attack
specification language: Domain specific language for dynamic training in
cyber range,” in 2021 IEEE Global Engineering Education Conference
(EDUCON), 2021, pp. 873–879.


	Introduction
	Background & Motivation
	Architecture
	Graphical User Interface
	Input Handling
	Code Parsing and Injection with LibCST
	Report, Resulting App and Feedback

	Evaluation
	Conclusion and Future Work
	References

