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Abstract—This study presents the initial step towards a thor-
ough analysis of the difficulty to reproduce a crash using search-
based crash reproduction. Traditionally, code size and complexity
are considered representative indicators of the difficulty for
search-based approaches, like search-based unit test generation,
to generate tests. However, unlike unit test generation, crash
reproduction does not seek to cover a set of behaviors but
instead to generate one or more tests exercising a specific
behavior reproducing a given crash. In this context, there is no
guarantee that the indicators used for unit testing are still valid
for crash reproduction. In this study, we seek to identify such
indicators by considering various code metrics, code smells, and
change metrics. We report our effort to collect those metrics for
JCRASHPACK, a state-of-the-art crash reproduction benchmark,
and an initial assessment by considering metrics individually.
Our results show that although JCRASHPACK is larger than
benchmarks used in previous studies, additional crashes should
be added to improve its diversity and representativeness, and that
no individual metric can be used to characterize the difficulty to
reproduce a crash.

Index Terms—Search-based crash reproduction, software mea-
surement, code quality, change metrics.

I. INTRODUCTION

Information about an application crash, like a stack trace
for Java applications, are usually reported to the developers
through an issue tracker. Based on the report’s information, the
developers debug the software by identifying the root cause
of the crash and applying a fix to the code. To ease their
investigation, developers can start their debugging process by
reproducing and exposing the crash, and (latter) write a test
case to ensure that the fix does not induce regression errors [1].
Recent developments lead to the (partial) automation of the
crash reproduction and exposure process. When a new issue
is created, an automated process fetches the stack trace and
try to generate a crash reproducing test case able to reproduce
and expose the crash [2].

Various approaches have been developed to automate the
generation of a crash reproducing test case [3]–[7]. Among
those, search-based crash reproduction yields the best results
by reproducing more crashes and generating helpful test
cases [4]. Recently, a study [8] revisited the state-of-the-
art approach by building JCRASHPACK [9], a benchmark
containing crashes from open-source projects. They identified,
among other challenges, code complexity and the difficulty
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of generating input data as the main barrier for search-based
crash reproduction. This study, however, does not provide
any indication about the difficulty to automatically reproduce
a given crash. This is problematic both for practitioners
and researchers. From a practitioner perspective, search-based
crash reproduction is a best-effort technique relying on an
evolutionary algorithm to explore the space of possible test
cases to find the one able to reproduce the crash. This
evolutionary algorithm can be configured using many different
parameters. Indications on the right parameters to use for a
given crash are essential to enhance the adoption of search-
based crash reproduction by practitioners. From a researcher
perspective, and despite the diversity of projects considered in
JCRASHPACK, there is little indication that the set of crashes
currently used to evaluate search-based crash reproduction ap-
proaches is diverse and representative enough to draw general
conclusions [10].

In unit test generation, the factors considered to select the
projects and classes under test to run an evaluation are the
size (e.g., number of classes, number of lines of code, etc.)
and the complexity of the code (e.g., number of branches,
or the cyclomatic complexity) [11], [12]. Those factors are
considered as an approximation of the difficulty for a search
process to generate unit tests covering a project or a set of
classes. Unlike unit testing, crash reproduction does not seek to
achieve the full coverage of a set of classes but generates one
or more tests exercising a specific behavior leading to a given
crash. In this context, there is no guarantee that the factors
used for unit testing are still valid for crash reproduction.

In this exploratory study, we seek to identify such factors
by considering various metrics from static code analysis, like
complexity, coupling, etc.; code smells, as they can hamper
testability; and change metrics, as complex code changes have
a higher chance of injecting faults in the source code.

Our results show that although JCRASHPACK is larger than
benchmarks used in previous studies, additional crashes should
be added to improve its diversity and representativeness, and
that no individual metric can be used to characterize the
difficulty to reproduce a crash.

II. BACKGROUND

A. Search-based crash reproduction

Writing a crash reproducing test case is a useful, yet time-
consuming and costly for debugging [1]. Hence, many au-
tomated techniques have been introduced to ease this process

1



Listing 1. XWIKI-13377 crash stack trace [8]
0 java.lang.ClassCastException: [...]
1 at [...].BaseStringProperty.setValue([...]:45)
2 at [...].PropertyClass.fromValue([...]:615)
3 at [...].BaseClass.fromMap([...]:413)
4 [...]

[3]–[6]. A previous study shows that search-based crash repro-
duction, which applies search-based test generation techniques
to automate crash reproduction, is the most effective approach
[4]. It has also been confirmed that crash reproducing test cases
generated by this approach aid developers in fixing bugs [4].

Search-based crash reproduction takes as input the applica-
tion, in which the crash happened, and a stack trace (reported
in a crash report) with one of its frames indicated as the target
frame. Then, it initiates a search process to generate a test case,
which reproduced the given stack trace from the deepest frame
up to the target frame. For instance, by passing the stack trace
in Listing 1 as the given tack trace and frame 2 as the target
frame, search-based crash reproduction generates a test case
which reproduces the first two frames of the given stack trace
with the same type of exception (ClassCastException).

1) Fitness function: To reproduce a given crash, search-
based crash reproduction relies on a fitness function called
CRASH DISTANCE (described in Equation 1) to evaluate the
generated test cases, thereby guiding an evolutionary algorithm
towards generating a crash reproducing test case for a given
stack trace.

f(t) =

{
3× ds(t) + 2×max(de) +max(dt) line is not reached
2× de(t) +max(dt) line is reached
dt(t) exception is thrown

(1)
Where ds(t) ∈ [0, 1] measures the distance between the
execution of a generated test t from reaching the line of the
target frame (target line) using the approach level and branch
distance [13]; de(t) ∈ {0, 1} is a binary value indicating if
t throws the same type of exception as the given stack trace
(de(t) = 0) or not (de(t) = 1); dt(t) ∈ [0, 1] compares the
similarity of the frames in the given thrown stack trace by
test t against the frames in the given stack trace; and max(.)
indicates the maximum possible value for each heuristic.

Since considering de(t) and dt(t) is only relevant if test t
covers the target line (ds(t) = 0), CRASH DISTANCE (first
line of Equation 1) sets the maximum value for these two
heuristics before achieving the target line coverage. Therefore,
f(t) ∈]3, 6] before reaching the target line. Likewise, as shown
by the second line of Equation 1, measuring the stack trace
similarity (dt(t)) is not relevant before fulfilling the exception
coverage (de(t)), and thereby CRASH DISTANCE sets the
maximum possible value for dt(t). Hence, f(t) ∈]1, 3] before
t throws the same type of exception as the given stack trace.
Finally, when ds(t) and de(t) are zero, f(t) ∈ [0, 1] according
to the value of dt(t). Since the process is a minimization
process, the three heuristics are equal to zero for a crash
reproducing test case.
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Fig. 1. Study set-up overview

2) Benchmark-based evaluation: A previous study [8] pro-
posed JCRASHPACK [9]: a benchmark containing 200 stack
traces from multiple industrial open-source Java projects. They
performed an extensive evaluation of search-based crash repro-
duction and reported that this approach could not reproduce
more than 50% of the crashes. After a manual analysis,
they identified 13 types of challenges, among which code
complexity and input data generation are the main obstacles.

Although characterizing the challenges can guide re-
searchers towards designing new strategies to tackle the iden-
tified challenges, it does not help practitioners and researchers
to indicate how hard it is to reproduce a crash. In this study,
we try to answer this question by performing a more in-depth
analysis using various static code analysis metrics.

3) Search-based crash reproduction framework for Java:
BOTSING [7] is a well-tested and open-source search-based
crash reproduction framework for Java crashes. This frame-
work contains all of the approaches and techniques, introduced
in related studies [14]–[16].

B. Software measurement and code quality

Software quality assessment is a crucial activity in software
development. Besides software inspection, software measure-
ment is one of the main methods used to assess the quality
of software. Multiple software metrics have been designed to
establish meaningful relationships between measurable prop-
erties of software artefacts (e.g., lines of code, cyclomatic
complexity, etc.) and high-level software quality characteristics
(e.g., testatbility, evolutivity, maintainability, etc.) [17]–[21].

Unfortunately, these relationships have yet to be accurately
characterised (i.e., with suitable thresholds to interpret quality
based on measurement values) [22] and several limitations to
metrics have been pointed out [23], [24].

However, software measurement provides a promising ap-
proach to easily extract relevant features of a code-base that
can be quantitatively investigated and correlated.

III. STUDY SET-UP

The main goal of our study is to answer the following
research question: How do measurable properties of software
artefacts influence the difficulty to reproduce a crash using
search-based crash reproduction? To answer that question, we
follow the steps presented in Figure 1. We use the crashes
and projects from JCRASHPACK [9], and analyse them ( 1©
in Figure 1) using static code analysis (relying on Analizo
[25], CK [26], and PDM [27]) and code change metrics. To
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reproduce the crashes ( 2© in Figure 1), we rely on the results
of the evaluation of BOTSING from Derakhshanfar et al. [14].
Based on the collected metrics and the crash reproduction
results, we perform various analysis ( 3© in Figure 1) described
hereafter to answer our research question.

To run the different analysis ( 1© in Figure 1) on JCRASH-
PACK, we used a dedicated server (Ubuntu 16.04, 64-bits,
125 GB memory, processor E5-2650 with 40 cores). For each
version of the largest project (XWiki), CK ran on average for
12 hours, and Analizo ran between 16 and 21 hours. The other
projects have a negligible execution time. As those tool work
on a single thread, we ran them in parallel to save time.

A. Static code analysis

We measure code metrics from three general categories :
static code metrics, code smells, and cyclomatic complexity.
Code metrics have been used to assess code quality w.r.t. var-
ious aspects like, for instance, maintainability [21] and testa-
bility [20]. In this study, we hypothesize that, as for search-
based unit test generation [11], [12], code metrics provide
indications about the size of the search space to explore in
order to generate a crash reproducing test. Such metrics would
help to specify more precisely the impact of complex code and
complex input data, identified by Derakhshanfar et al. [8] as
challenging for search-based crash reproduction.

To measure the different class-level and method-level code
metrics, we used CK [26], a static analyser computing object-
oriented programming metrics, completed by Analizo [25], a
multi-language source code analyzer. For code smells, we used
PMD [27], a static rule checker looking for programming flaws
and bad designs, with the default set of rules for Java [28],
including the CyclomaticComplexity rule to retrieve the
cyclomatic complexity of the different methods.

Additionally to the different measures provided by the
different tools (the complete list is available in [29]), we define
and computed for each method the simple param part and
primitive part, denoting (resp.) the percentage of parameters
with a primitive or Java-defined type, and the percentage
of parameters with a primitive type. Those two measures
provide an indication on the complexity of the possible input
parameters for a given method.

B. Code change metrics

Process metrics, like code change, have been used to
identify potential defects in a source code [30]. As defects
can manifest as crashes during the execution of a program,
the presence of source code that has been frequently or
recently updated could ease search-based crash reproduction
[31]. On the contrary, stable source code might be less prone to
crashes. For this study, we built a Python script, relying on the
PyGithub [32] and pandas [33], [34] libraries, to compute
the different metrics proposed by Rahman and Devanbu [30]:
the number of commits on a file (COMM), the number of
distinct developers having made a commit on a file (DDEV),
the number of lines added to a file (ADD), the number of lines
deleted from a file (DEL), the number of lines authored by

the highest contributor of a file (OWN), the number of distinct
developers who authored less than 5% of a file (MINOR).

C. Crash reproduction results

We used the results of the evaluation of BOTSING from
Derakhshanfar et al. [14] and the corresponding dataset [35],
which applies BOTSING on 122 crashes. In this evaluation,
each execution is repeated 30 times to address the randomness
in the search-based algorithm. We only considered the results
for vanilla crash reproduction without any seeding strategy and
the CRASH DISTANCE fitness function. All other parameters
were left to their default value.

From the evaluation results, we extracted for each frame
of each crash the final value of the fitness function, denoted
fitness score (fs) hereafter. As explained in Section II, a
final fitness of 0 denotes an execution where BOTSING could
reproduce the given crash from the given frame. Additionally
to the fitness score, we compute for each frame the reproduc-
tion rate as the ratio between the number of times BOTSING
could reproduce the frame (fs = 0) and the total number of
executions for that frame (30 in the dataset). Following Soltani
et al.’s recommendation, we consider the frame as reproduced
if the reproduction rate is (strictly) above 50% [4], and not
reproduced otherwise.

D. Data analysis

We start by exploring the data collected in the previous steps
( 1© and 2© in Figure 1) using different plotting approaches.
Those plots provide an overview of the data distribution across
the different applications of JCRASHPACK. More specifically,
we plot in boxplots the different class-level and method-level
measures collected for the methods and classes pointed in the
different frames of the crashes.

Next, we identify correlation between the different metrics
and the fitness score(fs) achieved by the final evaluation of
the BOTSING fitness function described in Equation 1. For
that, we apply Spearman’s rank correlation (ρ) and Kendall’s
rank coefficient (with a significance threshold of 0.05) using
pandas [33], [34] between each metric and fs.

The final fitness score denotes how far the search-based
crash reproduction process could go. Since the CRASH DIS-
TANCE considers the kind of exception thrown and the similar-
ity of the stack trace only if the target line is reached (i.e., the
line where the exception is thrown, indicated in the target
frame), we split the analysis for executions where fs > 3
(i.e., the target line was not reached before exhaustion of the
search budget) and fs ≤ 3 (i.e., the target line was reached
before exhaustion of the search budget). The rational behind
this decision lies in the different distances and heuristics used
by CRASH DISTANCE: the approach level and branch distance
(used by ds in Equation 1) to reach the target line (fs > 3),
and the exception distance and stack trace similarity (used by
de and dt in Equation 1) to reproduce the exception thrown
by the crashing executions. Additionally, we use Cohen’s
interpretation for effect size [36]: small for 0.10 < |ρ| ≤ 0.30,
medium for 0.30 < |ρ| ≤ 0.50, and large for |ρ| > 0.50.
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Fig. 2. Excerpt of the distribution of the normalized static code metrics
values: cyclomatic complexity (cyclo), number of lines of code (loc), number
of parameters (parameters), percentage of parameters with a primitive or Java-
defined type (simple param part), percentage of parameters with a primitive
type (primitive part), depth of inheritance tree (dit class), number of children
(noc), coupling between objects (cbo), weighted methods complexity per class
(wmc).

TABLE I
PEARSON’S CORRELATIONS (r) VALUES WITH MEDIUM EFFECT SIZES FOR

CLASS (c) AND METHOD (m) LEVEL METRICS.

Name fs ρ Description
maxNestedBlocks (c) > 3 0.34 Max. number of nested blocks.
variables (m) > 3 0.42 Num. of variable declarations.
tryCachQty (m) > 3 0.31 Num. of try/catch.
wmc (c) > 3 0.34 Class complexity.
loc (m) > 3 0.44 Num. of line of codes.
cbo (m) > 3 0.33 Coupling between objects.
maxNestedBlocks (m) > 3 0.39 Max. number of nested blocks.
rfc (m) > 3 0.45 Response for a class.
cyclo (m) > 3 0.37 Cyclomatic complexity.
mmloc (c) > 3 0.45 Max. method LOC.
simple param part (m) ≤ 3 -0.42 Perc. of simple parameters.
primitive part (m) ≤ 3 -0.40 Perc. of primitive parameters.
cyclo add (m) ≤ 3 0.54 Lower frames add. complexity.

IV. INITIAL RESULTS

A. Data visualisation

Figure 2 shows the distribution of the different measures
for the frames of the crashes in JCRASHPACK. All the mea-
sures are normalized to be represented on the plot. Only the
percentage of parameters with a primitive or Java-defined type
(simple param part) has a good distribution. For all the other
measures, the median is below 0.2 with outliers up to 1.0. We
observe the same distributions of values for the change metrics
(omitted due to space constraints), where only the number of
distinct developers (DDEV) is well distributed. This suggests
that additional crashes should be added to JCRASHPACK to
improve its diversity and representativeness [10].

B. Correlation analysis

Table I provides the significant correlation values with a
large or medium effect size. At the class level, all the metrics
correlates with a medium effect size. At the method level,
several metrics correlate with a medium effect size. Notably,
the response for class (rfc), and the maximal method length
(mmloc) have the highest correlation.

For executions where the target line was reached (fs ≤ 3),
the percentage of parameters with a primitive or Java-defined
type (simple param part) and the percentage of parameters
with a primitive type (primitive part) correlate with a medium
effect size. Notably the additive cyclomatic complexity (cy-
clo add), computed by adding the cyclomatic complexity of
the of the methods pointed by the different frames in a stack
trace correlates (0.54) with a strong effect size.

The complete list of correlation coefficients between the
fitness score and the different metrics is available in [29].

V. DISCUSSION AND FUTURE WORK

a) Data collection: Collecting large amounts of data is
not trivial. Additionally to the problems coming from the
disparity of format for the analysis reports, some tools have
costly operations like parsing all the files in a project or
building a dependency graph. Executing those operations on
large projects part of JCRASHPACK, like the different versions
of XWiki (with around 102.5 MB of source code), poses
several challenges. We ran our different analysis on a dedicated
(powerful) server, allowing to reduce the execution time. In our
future work, we will reduce the analysis cost by focusing on
the metrics and corresponding elements of the projects relevant
to characterize the difficulty to reproduce a crash.

b) Code smells: Our data collection also includes the
identification of code smells for the different projects of
JCRASHPACK. We did not discussed how the presence of
smells can influence the difficulty to reproduce a crash. Our
initial assessment indicates that the correlation between the
number of rules violated in a target class and the final fitness
score is significant but very low, both for execution reaching
and not reaching the target line.

c) Machine learning: The dataset we collected will be
used for more advanced analysis and data visualisation ap-
proaches used in the machine learning community. For in-
stance, the application of a decision or regression tree learning
algorithm would help understanding the factors (e.g., code
smells) impacting the difficulty to reproduce a crash.

d) Configuration of the search-process: Finally, for our
evaluation, we considered only one configuration of BOTSING
(the vanilla one from Derakhshanfar et al. [14]). However, the
search-process can be tuned using many different parameters,
which can be hard for newcomers and hamper the industrial
deployment of search-based crash reproduction. One of our
end-goal is to define a configuration recommender for BOTS-
ING which can, based on a crash and the application source
code repository, recommend an optimal configuration to apply
to reproduce the crash.
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