
FuzzE, Development of a Fuzzing Approach for
Odoo’s Tours Integration Testing Plateform
Gabriel Benoit∗, François Georis†, Géry Debongnie†, Benoît Vanderose∗ and Xavier Devroey∗

∗NADI, University of Namur, Namur, Belgium. Emails: benoit.vanderose@unamur.be, xavier.devroey@unamur.be
†Odoo S.A., Grand-Rosière, Belgium. Emails: fge@odoo.com, ged@odoo.com

Abstract—For many years, Odoo, an open-source add-on-based
platform offering an extensive range of functionalities, including
Enterprise Resource Planning, has constantly expanded its scope,
resulting in an increased complexity of its software. To cope with
this evolution, Odoo has developed an integration testing system
called tour execution, which executes predefined testing scenarios
(i.e., tours) on the web user interface to test the integration
between the front, back, and data layers. This paper reports our
effort and experience in extending the tour system with fuzzing.
Inspired by action research, we followed an iterative approach
to devise FuzzE, a plugin for Odoo’s tour system to create new
tours. FuzzE was eventually developed in three iterations. Our
results show that mutational fuzzing is the most effective approach
when integrating with an existing testing infrastructure. We also
reported one issue to the Odoo issue tracker. Finally, we present
lessons learned from our endeavor, including the necessity to
consider testability aspects earlier when developing web-based
systems to help the fuzzing effort, and the difficulty faced when
performing triage and root cause analysis on failing tours.

Index Terms—software integration testing, fuzzing, Odoo, action
research

I. INTRODUCTION

Odoo [37] is a highly configurable platform with a large
offer of modules to rapidly build and customize web-based
applications supporting the day-to-day of a company [23], [25].
For instance, Odoo offers modules for classical Enterprise
Resource Planning (ERP) tasks like managing customers, sales,
invoices, etc. With its rapid development, Odoo is facing new
challenges, including the automated execution of integration
tests designed to test the correct integration of the front-end,
developed in JavaScript and TypeScript, and the back-end,
developed in Python. For that, Odoo has developed an in-house
solution called tours execution [35]. A tour is an integration
test, starting an Odoo instance and executing a pre-defined
test scenario on the web interface. The development and
growing usage of the tours for integration testing offered us an
opportunity to develop new exploratory testing approaches. In
our case, we seek to incorporate fuzzing into the tour system.

There are several automated test case generation approaches
for various kinds of systems. Search-based can generate unit
[15], [21], [24], [43], integration [19], [20], [40], [45], [48], and

This research was funded by the CyberExcellence by DigitalWallonia
project (No. 2110186), funded by the Public Service of Wallonia (SPW
Recherche).

978-1-5386-5541-2/18/$31.00 ©2025 IEEE. This is the authors’ version. The
final version is published in the Proceedings of the 2025 IEEE Conference on
Software Testing, Verification and Validation (ICST), Naples, Italy.

system tests [7], [31], usually by relying on instrumentation
of the source code under test that can be automated or not.
Similarly, fuzzing has been used to generate test input values
for various purposes [30], including enhancing code coverage
[39], [41], [50], triggering specific crashes [10], or adopt an
exploratory testing approach for system testing [8], [22]. Search-
based and fuzzing approaches have been applied to various
systems, including web-based systems like the Odoo platform
[3], [49]. Our goal in this paper is not to develop a new approach
but to enhance exploratory testing of the Odoo platform by
generating tours [35].

However, applying fuzzing to test a web-based system yields
several challenges [4], [5]. First, the existence of dynamic
interface elements and dynamic code means considering
interface changes after every action and even in the absence of
actions. Second, it must be possible to mimic a user’s behavior,
particularly when filling in forms with fields requiring specific
formats. Failing to do so prevents the exploration of other parts
of the application. Finally, in some cases, it is necessary to be
able to fill in fields with predetermined values, for example,
in the case of authentification [18]. This is particularly true
for Odoo, given the data-management nature of many different
features.

We developed our plugin for the tours execution system
called FUZZE at Odoo S.A. in Grand-Rosière, Belgium, by
building on previous work testing graphical web user interfaces
[3], [32], [33], [51]. Inspired by action research, we iteratively
defined, implemented, and evaluated our solution. Due to the
time constraints of the internship at Odoo S.A., we limited
ourselves to three iterations [12]. We evaluated different
configurations of FuzzE on the Odoo platform and reported
a bug in the GitHub issue tracker. The FuzzE plugin is open-
source and available [11], and we provide a replication package
for our evaluation [13].

The rest of this paper is structured as follows: first, we
provide an overview of Odoo S.A.’s context at the end of this
section. Then Section II describes the necessary background
information, while Section III gives an outline of the Odoo
platform. Section IV describes the development of the FuzzE
approach and its implementation. The evaluation of FuzzE 3.0
is described in Section V. Finally, we provide and discuss
lessons learned from our endeavor in Section VI and conclude
in Section VII.

Odoo’s Context: Odoo (previously OpenERP) [25], [37] is
an open-source addon-based platform offering a large range of



<email> ::= <localpart> "@" <domain>
<localpart> ::= <string>
<domain> ::= <string> "." <tld>
<string> ::= <character> <string> | <character>
<tld> ::= "com" | "net" | "org" | "io"
...

Listing 1. Excerpt of the valid e-mail BNF grammar of FuzzE

functionalities, including Enterprise Resource Planning (ERP),
like customer relationship management, sales management,
stock management, etc., but also a content management system
(CMS), business intelligence, etc. Odoo’s core developer and
maintainer is Odoo S.A., a Belgian company with more than
2,800 employees, responsible for developing and maintaining
the core Odoo platform and its add-ons and the Odoo develop-
ment framework. Odoo’s development framework allows many
external contributors to develop addons to extend and customize
Odoo to fit specific needs. To give an order of magnitude, Odoo
S.A. counts more than 5,000 external partners and 12 million
Odoo users. We use Odoo version 17.0, which counts 1,190.4
kLOC (i.e., thousands of lines of code) of Python code, 1,662.0
kLOC of JavaScript/TypeScript code, and 595.0 kLOC of XML
code.

II. BACKGROUND AND RELATED WORK

Among the different possible testing strategies, we focus on
fuzzing and related web-based testing through the user interface
(i.e., a web page) for black-box testing, as we do not assume
access to the source code for additional instrumentation.

A. Generation, Mutation, and Grammar-based Fuzzing

Fuzzing consists in generating input values (called fuzz)
pseudo-randomly to trigger unexexpected behaviors in a system
under test [29], [30], [51]. Existing fuzzing approaches are
usually tailored for a particular system or target specific types
of faults, e.g., fuzzing for security testing [10], [14]. We can
distinct two categories of fuzzers [29]: generation-based fuzzing,
producing fresh fuzz, and mutation-based fuzzing producing
fuzz by modifying either provided input values or previous
fuzz. For both categories, the fuzzer can generate invalid fuzz
that can be of little interest when testing systems having highly
structured input values.

Fuzzers rely on one or more grammars to compactly
represent valid inputs to prevent invalid values from being
generated. Grammar-based fuzzing can be applied to both
generation and mutation-based fuzzers [17], [27], [28], [46],
[51]. For instance, Listing 1 presents an excerpt of the grammar
used in our implementation to represent valid e-mail addresses.
In our case, we only consider .com, .net, .org, and .io
domain extensions (as specified by the <tld> in Listing 1).

Grammars offer a powerful tool for generating and mutating
values. A generation-based fuzzer can derive valid fuzz follow-
ing the grammar’s production rules. In contrast, a mutation-
based fuzzer can modify an existing value by parsing it and
modifying the abstract syntax tree according to the production
rules. In both cases, the grammar can also guide the fuzzing

effort, for instance, by checking that the different production
rules are covered. In our case, we will use grammar-based
fuzzing for two distinct purposes: (i) generating valid input
values for the different input fields of Odoo and (ii) representing
the different states of the Odoo web-UI, as explained in the
following sub-section.

B. Automated Testing Through Web User Interface

Previous attempts to test Odoo through its web user interface
include TESTAR [49]. TESTAR is a tool for automating
exploration testing at the user interface level of (initially)
Desktop applications. It relies on the operating system’s
Accessibility API to scan the graphical user interface (i.e.,
the system’s current state). From a scan, TESTAR identifies
widgets (e.g., buttons, input fields, etc.) to identify possible
actions to execute. Each action execution potentially leads the
system to a new state that is checked for validity.

Almenar et al. [3] applied TESTAR to Odoo with a few
adjustments to consider web application specificities (web
latency, exclusion of the browser from the elements to test,
etc.). Testing Odoo in a black-box setting (i.e., without access
to the source code), they used the number of states, the longest
path, and the minimum and maximum coverage per state (i.e.,
the ratio between the number of actions executed and the
total number of actions on a screen) as metrics to assess
the coverage achieved by TESTER. Their approach faced
limitations, including the inability of the accessibility API to
detect confirmation questions in the form of emerging windows
and interactions coded via the CSS, resulting in a mix between
actions available in emerging panels and those in the windows
under them. In our case, we rely on Odoo’s tour execution
system, which leverages jQuery to select elements in the HTML
page.

More generally, TESTAR and other related approaches [9],
[32] like Crawljax [33] and QExplore [47] build a state machine-
like model representing the different states of the graphical
user interface (e.g., one screen corresponds to a state) with
the various actions that can be performed (e.g., clicking a
specific button or fill in a field). Following Zeller et al.’s
examples [51], we will consider automating the exploration
of the Odoo interface to build a state machine describing
different possible valid tours. Given that tours are defined
using a Domain Specific Embedded Language (DSEL), we
will encode this state machine as a grammar that can be used
by our fuzzer. We provide more information about the Odoo
platform and the tour execution system in the following section.

III. THE ODOO PLATFORM

Odoo follows a three-tiers architecture [36]: the presentation
tier (front-end), here, a web client, relies on the Odoo Web
Library (OWL) framework [38] written in Typescript; the logic
tier (back-end) is implemented as Python modules; and the
data tier (persistence layer) relies on a PostgreSQL database
and is abstracted using an Object Relational Mapping (ORM).



1 /* Here are imports */
2 registry.category("web_tour.tours").add(’main_flow_tour’

, {
3 test: true,
4 url: "/web",
5 steps: () => [
6 /* Here is a step */, {
7 mobile: false,
8 trigger: ".o_field_widget[name=partner_id] input",

9 extra_trigger: ".o_breadcrumb .active:contains(’Mj
\?\}\-\#’)",

10 content: _t(’Select a seller’),
11 position: ’top’,
12 run: "text 1b\{\#\|\~",
13 }, {
14 /* Here is another step */
15 }]
16 });

Listing 2. Excerpt of main_flow.js tour.

A. High Configurability

Odoo’s high configurability relies on a modular approach
[23], [36]. The default installation includes several modules
(also called add-ons in Odoo’s ecosystem), which can be
extended. The Odoo platform includes an add-on management
system, which is in charge of installing and de-installing the
module and its dependencies. A module’s design follows the
same three-tier architectural vision (a front-end, a back-end,
and a persistence layer), and it can modify existing modules
using different mechanisms. In other words, each module can
have side effects (i.e., desired feature interaction) on the already
installed modules. Given the highly configurable nature of the
Odoo platform, advanced testing techniques are required to
ensure the quality of the platform and its various add-ons.

B. Integration Testing

Odoo relies on tours executed by a test runner to test the
integration between the three tiers of the different modules of
the application [35]. A tour is an ordered sequence of steps,
where each step is an action simulating an interaction between
a user and the web interface. Each tour (i.e., an integration
test) is described using a Domain-Specific Embedded Language
(DSEL) implemented as a set of JavaScript functions. Each
step composing a tour has the following properties:

• a trigger, defined as a jQuery 3, to select an element to
run an action on. Given the dynamic nature of the Odoo
web interface, the runner will wait for the element to be
visible before executing the action;

• an optional extra-trigger, which can serve as an additional
precondition (without executing the action on the selected
element);

• a run property, defining the action to execute on the
element selected by the trigger, which can be a function
or one of the base functions (click, double click, fill with
a given text, etc.);

• a timeout, specifying how long the step can wait before
executing the run action; etc.

Listing 2 presents an excerpt of the main_flow.js tour,
exercising many of Odoo’s functionalities. The line 8 specifies

the trigger that selects an input field with a name equal to
partner_id, with a precondition specified at line 9 testing
the presence of a random string (here, Mj\?\}\-\#) in the
active component. The action specified at line 12 will fill the
random string 1b\{\#\|\~ in the partner_id input field.
More information is available in the Odoo documentation [35].

For a given tour, the test runner will spawn an Odoo instance
with a given set of modules installed (i.e., the core modules
by default) and create a PhantomJs browser, point it to the
proper URL, and simulate the click and inputs, according to
the sequence of steps. In our context, one limitation of the tour
testing system is the impossibility of dynamically generating
tours: all the steps must be defined before starting the Odoo
server.

IV. DEVELOPMENT OF THE FUZZE APPROACH

We aim to further enhance testing practices at Odoo by
integrating fuzzing into the existing integration testing
infrastructure (Req.1). This is a hard requirement that must
be respected for (practical) reasons: first, the existing tours
system is itself included in different continuous integration
workflows and cannot be modified. Second, the setup and
configuration of an Odoo instance are not trivial, and relying
on the existing tours system eases the process. The second
hard requirement is that FuzzE has to be written in Python
(Req.2) to ease the integration into the Odoo ecosystem.

In other words, with FuzzE, we seek to generate tours corre-
sponding to potential user interactions that trigger unexpected
failures. Inspired by action research, we will follow an iterative
process to define and implement our approach and evaluate it
in the Odoo context. Each iteration will include a preliminary
evaluation and a retrospective on observations made so that
these can be taken into account in the next iteration. In total, the
development of our approach counts three iterations detailed
hereafter.

A. Iteration 1: Random Exploration of the Odoo Web UI

As mentioned in Section III, the main limitation of the tour
testing system is that one needs to restart Odoo to register
new tours to execute. This means that any exploration of the
highly dynamic web UI has to be done separately to identify
possible user actions from which we can generate tours using
generational fuzzing. This is depicted in Figure 1a: first, a
crawler (1), i.e., a software capable of exploring the pages
of a website by extracting links, clicking on the page buttons
and filling in the fields, explores the UI; then, the sequences
of actions serve as input to the tours generator (2) that will
produce tours to be executed on the Odoo test runner Our
initial aim is, therefore, to implement a crawler for dynamically
exploring the web UI, based on the Crawljax technique used by
Mesbah et al. [33] and TESTAR technique used by Almenar et
al. [3], both written in Java, to derive tours from the collected
sequences of actions.

a) Implementation: To respect Req.2, we implement our
crawler in Python and Selenium based on the fuzzing book’s
[51] implementation. For this first iteration, we use the most



Odoo
Web-UI

Crawler

Test runner
Tours

Actions Tours gen.
1 2

(a) Iteration 1: FuzzE 1.0 - Random generational fuzzing.

Odoo
Web-UI

Crawler

Test runner
Tours

Tours gen.
1 2

RPC

Instrument.
1b

1a

Grammar

(b) Iteration 2: FuzzE 2.0 - Grammar-based generational fuzzing.

Odoo
Web-UI

Test runner

Err. handler

Tour

Grammars

Tours

2
Setup

Teardown

Tour Mutation

Select input

Check format

Replace value

Generate tour

1

Start transact.

Rollback

Exec. tour

3

Succ.
Succ.

Succ.

4

Failed
Failed

Failed

(c) Iteration 3: FuzzE 3.0 - Mutational fuzzing.

Fig. 1. FuzzE conceptual evolution over three iterations.

naive method: we randomly explore the web UI and extract the
different components encountered during the exploration (here,
links, buttons, and input fields). The goal of this first iteration
is to familiarize ourselves with Odoo and identify potential
issues.

The crawling process proceeds as follows: (i) a Chrome
client instance is launched via Selenium and goes to the Odoo
instance page. (ii) The crawler logs in as an administrator
and iterates until no new elements are found, in which case,
it generates a tour from the sequences of actions performed.
(iii) For each iteration, it extracts links, buttons, and input
fields from the current page, then, randomly selects the next
component. (iv) If the next component is a link, it verifies that
this is an internal link and clicks on it. (v) If the component
is an empty input field, it generates a random string to fill
it. (vi) And if the component is a button, it clicks on it. Due
to the high reactivity of the web UI implemented using the
OWL framework, we need to repeat the extraction of the
different components after each interaction with the web UI,
as elements might dynamically appear or disappear. Figure 2
presents an example of a highly reactive web interface with
the availability of the button Save as Checked in the form
header, depending on the state of a related checkbox.

b) Observations: Following the implementation, we con-
ducted a small experiment on the crawler for 1,000 executions
on the standard Odoo Community version (v17.0) to identify
potential issues. First, the crawler does not wait for a possible

(a) Checkbox is checked. (b) Checkbox is unchecked.

Fig. 2. Example of the high reactivity of the Odoo web interface: update of
the Form header when the state of a related checkbox changes.

Fig. 3. Example of Many2One field available in Odoo forms.

UI update before repeating the extraction process, which
crashes the process when the update occurs between extraction
and execution of the chosen action. Second, as selection is
totally random, it is practically impossible to go beyond the
form-filling stages, as required fields are not filled in. Finally,
random input strings do not pass validation on the client side
and require additional information about format or valid input
values.

B. Iteration 2: Grammar-based Tours Generation

In this iteration, we solve the issues from the first iteration.
As illustrated in Figure 1b, we add a set of methods specific to
the Odoo context (1a and 1b) and a mechanism in the crawler
(1) for recording actions performed in the form of a state
machine encoded as a grammar, as proposed by Zeller et al.
[51]. This grammar is then reused to generate tours (2).

a) Odoo-specific Interactions: In practice, an additional
session connecting to the Odoo API via a Remote Procedure
Call (RPC) system (1a in Figure 1b) is set up during the
exploration to collect meta-information describing the various
fields. Odoo-specific action sequences are then dynamically
defined, e.g., filling non-standard input fields based on the
meta-information, like dates, account numbers, etc.

For this iteration, we implemented a macro for the Many-
2One field type (see Figure 3 for an example), a dropdown
field allowing to choose a value from a list of proposals, with
autocompletion. This macro clicks on the field to display the
list of values, extracts the values, and randomly selects one
value. Values include Search More... and Create and
edit... options, which allow exploring on-the-fly creation
and advanced search forms.

This approach, however, has (significant) limitations: (i) there
is no filtering mechanism to collect only information about the



fields of the current view (i.e., the current page displayed to
the user); (ii) the information about the model (i.e., the data
linked to the different fields) is extracted via a URL query
argument. However, Odoo’s specifications stipulate that query
arguments will be removed from URLs in future versions;
(iii) the OWL framework, used to define the web interface,
allows defining and extending components (e.g., forms), which
means that the naming of the input fields is not unique and
requires additional instrumentation on the web-client side to
collect the XPath from the web-page’s root, slowing down the
exploration process.

Also, using that information for setting up a macro for
each field type, if it were to be exhaustive, would prove very
cumbersome to maintain, as Odoo implements over 50 different
field types, including, fields with advanced interactions such
as drag and drop, making simulation of such movements very
complex.

b) Odoo’s Web UI High Reactivity: We partially solved
the web UI update detection issue identified in the previous
iteration by adding instrumentation on the client side to detect
updates on the web page (1b in Figure 1b). More specifically,
we rely on the native JavaScript function MutationObser-
ver to detect changes in the web page’s Document Object
Model (DOM).

Remaining limitations include the impossibility to predict
whether or not an action will result in a change to the
DOM, requiring to add a timeout to the wait mechanism.
Also, execution of the macro for Many2One fields generates
changes notification that should be ignored. Finally, the major
challenge is related to error detection: when an error occurs,
there is sometimes an irregular delay before the modal error
window appears, which is problematic because, during this
delay, actions continue to be executed, making it harder to
detect the action that led to the error.

c) Observations: Again, following the implementation,
we conducted a small experiment for 1,000 executions on the
standard Odoo Community version (v17.0) to identify potential
issues. First, despite meta-data provided by the Odoo API,
forms remain challenging to fill automatically as one needs to
synthesize highly structured data with dependencies between
the different fields.

Second, regarding identifying states, we first considered
using a method similar to that proposed by Mesbah et al. [33]:
i.e., comparing the DOM tree at each iteration with previously
saved trees. This method is very costly regarding memory
but also impacts performance using Python and Selenium.
Also, using a web framework such as OWL, which allows
for component recycling, leads to false positives and negatives
when identifying the states. As Mesbah et al. [33] explain,
the DOM trees are compared using a tolerance threshold. In
our case, if we do not set it to 0, we might end up with so
many similar components (and therefore DOM parts) that a
false positive is generated. Conversely, if we set the threshold
to 0, all DOMs are considered different, and we end up with
linear flows in which all states are considered distinct. Such
situations render the derived grammar unusable, as only one

path is possible. An alternative way of approximating the
similarity of the two states would be to compare all the data
stored in the Odoo database. However, given the size and
complexity of the database, even for the standard version, it
seems unrealistic.

In conclusion, tour generation using random or grammar-
based generational fuzzing cannot be implemented and inte-
grated into the current infrastructure without heavy additional
development and refactoring. This is due to various factors
specific to Odoo’s implementation (OWL, RPC API access,
etc.) but also linked to contextual constraints (database access,
highly structured data generation, etc.), making it complex to
solve problems encountered by Vos et al. [3] and Mesbah et
al. [33].

C. Iteration 3: Tours Mutation

Similarly to Almeida et al., [2], [42], where an existing test
case is mutated to create new test cases, this third iteration
focuses on mutating an existing tour. So, instead of generational
fuzzing, requiring to separate the exploration of the web UI
from the generation of the tours, we focus on mutational fuzzing,
starting from a given tour to generate new tours by applying
mutations. This reduces the scope of testing as it depends on
the initial tour (i.e., the initial seed), but meets our objectives as
it leads to a working prototype, integrated into Odoo’s testing
infrastructure. We can mutate a tour in different ways: we can
mutate the actions of the tour by mutating steps, or we can
focus on the input data used during the tour’s execution. Based
on previous observations, the first option will pose several
challenges as it requires considering the interdependencies
between the different actions during mutation. Therefore, we
chose the second option and focused on mutating input data
within a tour.

As illustrated in Figure 1c, FuzzE 3.0’s Python implementa-
tion relies on ANTLR [44] and works as a two steps process:
first, it takes as input a tour (and input values grammars) and
mutates its inputs (1). It produces variants (2) that will be
executed in a second step by the Odoo test runner (3). A
report (4) details which tours succeeded and failed during the
execution. We detail the different steps of the mutations in the
following paragraphs.

a) Tours Mutation: For a given tour, the different inputs
are identified, thanks to the command text used in a run
property to indicate to the runner to fill the corresponding
trigger with the given text. Mutation consists of replacing
the input value with another generated value. To avoid issues
related to structured input fields encountered during iteration 1,
FuzzE 3.0 supports formats encoded as grammars and provided
as inputs (here, integer, natural, ream, e-mail, phone, date,
and string). If the original input can be parsed according to
one of the formats, the corresponding grammar will be used
to generate a new input. Also, to account for dependencies
between different steps, FuzzE replaces all references to the
original text with the corresponding new value in the tour.

b) Input Selection: FuzzE can be configured to select the
inputs to replace based on one of the following policies: the



all strategy selects all the inputs; the selection strategy selects
a specific subset of all fields; the random strategy selects a
random subset of all fields following a normal distribution
(centered reduced N (0, 1) by default). By default, an input
has a probability of 0.5 to be selected; the random selection
strategy selects a random subset of a given set of all inputs.
Each time an input is selected and replaced, FuzzE records the
newly mutated tour.

c) Integration in the Odoo Test Runner: We rely on the
subTest functionality provided by the unittest module. A
subTest is a method for including several small tests within a
larger test. The goal is to avoid re-executing the time-consuming
setup and teardown parts for each generated tour. As
illustrated in (3) in Figure 1c, each subTest corresponds to
the execution of a single mutated tour. If a mutated tour fails,
the error is recorded with the step that caused it and the mutated
input. The database consistency restoration between two tours
is handled using transactions: the database is set when starting
the overall execution, and a new transaction starts for each new
subTest (i.e., each new tour) with a corresponding rollback,
executed at the end of the subTest.

d) Observations: The small experiment for 1,000 exe-
cutions on the standard Odoo Community version (v17.0) on
this third iteration provided encouraging preliminary results.
We used FuzzE 3.0 to carry out a larger empirical evaluation,
described in the following section.

V. EVALUATION

Our primary goal was to enhance exploration testing for
the Odoo platform. To that end, we developed FuzzE 3.0, a
plugin for the tour execution system, and evaluated it on Odoo
version 17.0. We focused on failing tours as they might denote
the presence of faults.

A. Evaluation Setup
We evaluated FuzzE 3.0 using the main_flow tour as input.

This tour is the largest available tour in the Odoo test suite
and exercises most of the default Odoo features. We used the
four different selection strategies described in Section IV-C:
all, selection (sel), random (ran), and random selection (rse).

a) Parameters Configuration: For the selection (sel) and
random selection (rse) strategies, we excluded 10 inputs from
the 35 that can be selected. Excluded inputs are either fixed
values (i.e., enumeration) or quantities directly validated by the
front end. A free input field that serves as a control indicator
for the tour is also excluded. We run the evaluation with a
budget of 1,000 iterations. Given that the main_flow tour
takes ∼ 2 minutes to execute, the execution time upper-bound
for the evaluation is 1, 000× 2× 4 ≃ 5.5 days. FuzzE 3.0 is
open source [11], and the details of our evaluation and the
results are available in our replication package [13].

b) Data Analysis: We compare the different strategies
based on the percentage of failed tours (4 in Figure 1c). We
complete our analysis by manually triaging failed tours and
investigating the potential causes (i.e., underlying faults) of
those failures. For that, we identify the failing steps in the
generated tours with their corresponding input data.

TABLE I
FAILURE RATES FOR THE DIFFERENT STRATEGIES.

Selection strategy Failures Rate

All (all) 1,000 100%
Selection (sel) 45 4.5%
Random (ran) 1,000 100%
Random selection (rse) 28 2.8%

B. Evaluation Results

As shown in Table I, the all and ran strategies result in a
failure rate of 100%. The sel and rse strategies have a failure
rate of 4.5% and 2.8%, respectively. These two percentages
seem more likely to represent cases where potential bugs are
found. Those numbers can be explained by the fact that some
fields in the main_flow tour only accept a specific set of
values, causing failures for the all and ran strategies. Such
fields have been excluded for the sel and rse strategies, as
explained in Section V-A. To confirm our results further, we
proceeded with a manual analysis of the failing tours for the
different strategies.

a) All Strategy: The failures occurred at the same step
for the 1,000 iterations (.o-form-buttonbox) at the tour’s
beginning. Our manual investigation shows that one of the prior
steps requires selecting a type of product concerned by the
action specified in the .o-form-buttonbox step. There is
a dependency between those two steps, requiring the action
and products to be compatible, which is not the case in the
1,000 iterations.

b) Selection Strategy: The step .o_field_widget-
[name=email] input accounts for 27 failures out of
45 failures. After re-executing the failing tours, we noticed
that when encoding a new customer or salesperson, creating
one on the fly is possible using only an e-mail address.
However, it turns out that if there are commas (’,’) in the text
entered, only the first valid e-mail address detected between
the commas is saved. For example, an entry of the form
test-1,test@test.com,test-2,test2@test.com
saves test@test.com in the database. We opened an issue
in the Odoo Github to report the problem: https://github.com/
odoo/odoo/issues/168068.

The steps .o_data_row:has(.o_data_cell:con-
tains(<text>)) .o_data_cell:first, where the
placeholder <text> is the content of a mutated field, accounts
for 18 out of 45 failures. After re-executing the failing tours, we
saw that, by default, all names of the corresponding fields have
been converted to lower cases. When the placeholder <text>
in the query contains(<text>) contain upper-cases letters,
it triggers an error. This could be solved by refining the input
grammars provided to FuzzE 3.0 to distinguish upper- and
lower-only cases.

c) Random Strategy: Similar to the all strategy, the
failures occurred at the same step for the 1,000 it-
erations (.o_field_widget[name=project_id] in-
put). Again, after manual investigation, we identified inter-



dependencies between this step and prior steps, requiring
compatible data.

d) Random Selection Strategy: The 28 failures occur
at the .o_field_widget[name=email] input step,
same as for the selection strategy. Our analysis showed that it
has the same root cause.

C. Threats to the Validity

This subsection presents the threats to the validity of our
evaluation using FuzzE 3.0.

a) Internal Validity: We performed our parameters config-
uration using a preliminary evaluation to identify problematic
input fields that should be excluded from selection for mutation
for the sel and rse strategies. This was done in collaboration
with the Odoo developers to confirm the relevance of the
remaining input fields.

b) External Validity: Our evaluation focuses on Odoo
17.0 using one tour as input. This default tour is used for
integration testing as it exercises most of the default Odoo
features. We cannot guarantee that it is representative of all
possible tours, but as it is the primary tour used by Odoo
developers, it was the most relevant one in our case.

c) Reliability: The first author, a junior developer, manu-
ally analyzed the failing tours. The second and third authors,
both senior developers at Odoo S.A, validated the conclusions.
The failure identified as a bug was reported in the Odoo GitHub
issue tracker, but unfortunately, the issue has not gone through
triage as of the time of writing this paper.1

VI. DISCUSSION

Although it is possible to implement fuzzing techniques on
Odoo’s web interface, the task is far from trivial. In addition
to the responsiveness of web applications [33], new challenges,
like the usage of highly reactive web frameworks like OWL,
make the application of fuzzing more complex. In our case,
combining existing tests (i.e., tours) with mutational fuzzing
allowed us to test different values for the input fields used
within a tour and show unexpected behavior.

A. Generational vs Mutational Fuzzing

As observed when evaluating FuzzE 1.0, not considering the
Odoo specificities produced an inefficient tool that could only
explore a few pages. As stated by Al Salem and Song [1], it
is essential to consider the context to implement an effective
and efficient fuzzing approach.

Generational fuzzing requires a dynamic exploration of the
Odoo interface or a grammar representing valid tours. In FuzzE
1.0 and 2.0, we attempted to adapt the TESTAR approach
from Almenar et al. [3] to the Odoo tour system. However,
unlike tours, which rely on HTML code, TESTAR relies on
the operating system’s graphical API, making it impossible to
query the structure of the HTML document to identify triggers
for the tour system.

Although simpler, mutational fuzzing allowed us to respect
Req.1 and integrate FuzzE 3.0 with the Odoo infrastructure, and

1https://github.com/odoo/odoo/issues/168068

run fuzzing campaigns. Thanks to the different input grammars,
the tool can generate formatted strings and, as pointed out by
Alsaedi et al. [5], minimizes validation errors at the web client
level.

Lessons Learned. For a system with an existing test execution
environment, we recommend using mutational fuzzing first, as
it is easier to adapt and put into practice. Mutational fuzzing
can then serve as a starting point to further enhance the fuzzing
effort.

B. Selection Strategies for the Inputs to Mutate

a) All Strategy: This strategy, selecting all the inputs of a
tour, has the advantage of not requiring supervision. However,
it was ineffective in our evaluation: all the mutated tours failed
at the same step, requiring filling a specific field from a set of
enumerated values. To avoid this situation, one can choose or
specifically design an initial tour referencing only free input
fields.

b) Selection Strategy: Unlike the previous strategy, the
selection strategy allows configuring which input fields’ values
will be mutated. Our evaluation showed that this strategy was
effective. However, it requires a deeper knowledge of the
system under test to identify the input fields to select. In our
case, we selected the fields by removing input fields requiring
specific values on a trial-and-error basis. Other usages of the
selection strategy also include selecting a small subset of fields
to deepen the testing of particular tour steps.

c) Random Strategy: Like the all strategy, the random
strategy does not offer enough control over the input fields
selected for mutation. Our evaluation showed that it was
ineffective in our case.

d) Random Selection Strategy: This strategy relies on
the second and third strategies, inheriting their strengths and
weaknesses. Only a subset of the specified fields is selected,
which could be interesting when the time budget is limited.
Our evaluation results showed that the second strategy found
the same bug.

Lessons Learned. Generally, when testing complex web user
interfaces, a strategy providing more control over the input
fields to mutate will give better results. The selection and
random selection strategies (if the time budget is limited) allow
either to avoid complex fields requiring specific values or test
specific parts of the tour. However, the all strategy can serve
as a starting point with a simple input tour, only requiring to
fill input fields corresponding to one of the input grammars.

C. Testability of the System

Our evaluation showed that additional constraints on input
fields might break the tours during mutation. This was
especially true for the all and random strategies. One possible
lead in solving the limitations we encountered could be to
enhance testability of the Odoo platform itself [6], [16], [26],
[34].

As explained in Section IV-B, we used the Odoo API to
collect meta-information (e.g., data input format, input data



dependencies, etc.) about the different fields. However, to be
effective, this API would require filtering mechanisms to collect
information about fields specific to the view that is currently
displayed, as well as support for extracting full data (i.e., the
model) about these fields. The different input fields would
also require unique identifiers that do not rely on additional
instrumentation.

Lessons Learned. When using fuzzing on web user interfaces,
it is interesting to consider testability aspects during the
implementation of the system to enable the usage of advanced
fuzzing approaches. For instance, by defining unique identifiers
for every graphical element of the web interface or by providing
readily available APIs to collect additional meta-information,
like data formats and additional constraints.

D. Failed Tours Root Cause Analysis

Failing tours require a post-test analysis to understand the
origin of a failure. During our evaluation, we observed that the
major challenge was identifying the steps causing the failure.
Indeed, in most cases, the step where the tour crashes is linked
to a previously entered value that has caused a chain reaction
leading to the failure. Identifying this chain to proceed to a
root cause analysis is not easy: it requires replaying the tour
to observe what happens. An alternative could be to record
the different data (i.e., fields’ inputs and database records) and
compare those to those recorded when executing the original
tour. This alternative requires further development and is left
for future work.

Lessons Learned. Except when the failure is caused by direct
validation of an input value, the mutated step is not directly
causing a failed execution. It is rather a step that triggers
depending on the correct execution of the mutated step. This
makes the analysis process more complex.

E. Limitations and Future Work of FuzzE 3.0

Our method also has its shortcomings. First, as for gen-
erational fuzzing, tours in FuzzE 3.0 are relatively long to
execute, requiring extended periods to collect results. Second,
the Odoo tour system does not allow loading new tours once the
test runner has been launched (3 in Figure 1c). The mutants
must, therefore, be generated beforehand (1 in Figure 1c),
which prevents using feedback from the tours’ execution to
drive the mutation process. We made this choice as the setup
and teardowm steps (3 in Figure 1c) of tours’ execution is
time-intensive. An alternative could be to have a feedback
loop connecting the results of tours’ execution to the tour
mutation (from 4 to 1 in Figure 1c) at the expense of multiple
executions of the setup and teardowm steps. Extending FuzzE
3.0 to include this feedback loop is part of our future work.

Regarding the analysis and triage of the tours’ execution,
additional instrumentation could be used to collect additional
information about the system’s state. As explained in the
previous section, it could ease the root cause analysis process,
but it could also help collect additional feedback to drive the
fuzzing effort and provide testing adequacy information (like

coverage). Similar to what we implemented for grammar-based
generational fuzzing in FuzzE 2.0 (see Section IV-B), this
additional instrumentation could be adapted to be included in
FuzzE 3.0.

VII. CONCLUSION

We aimed to develop a fuzzing approach incorporated
into Odoo’s tour integration testing infrastructure. To achieve
this goal, we applied an iterative process inspired by action
research to develop FuzzE in three iterations. We tried to apply
generational fuzzing for the first and second iterations, requiring
exploring the Odoo web interface to collect the possible actions.
Unfortunately, this approach proved ineffective due to various
factors specific to the Odoo implementation but also linked to
contextual constraints, requiring heavy additional development
and refactoring to solve the various challenges.

For the third iteration, we applied mutational fuzzing on
existing tours by mutating the input values used for the various
input fields. We devised different input selection strategies and
showed that the selection and random selection strategies are
more effective due to the higher control they offer over selecting
the input fields to mutate. Our evaluation also identified an
issue reported in the Odoo issue tracker: https://github.com/
odoo/odoo/issues/168068. Finally, we discussed several lessons
learned, both from the devise and implementation of FuzzE
3.0 and its application on Odoo.

Our future work includes further developing Fuzze 3.0 by
investigating possible feedback loops from the tours’ execution
to the tour mutation to improve the fuzzing process’s guidance.
Additional instrumentation for data collection during tour
execution could also ease the root cause analysis process and
the identification of false positives when analyzing failing
mutated tours. We intend to see how differential data analysis
approaches could help in that regard.

ACKNOWLEDGMENT

We warmly thank Odoo S.A. and the Odoo collaborators
for their invaluable help.

REFERENCES

[1] H. Al Salem and J. Song, “A review on grammar-based fuzzing
techniques,” International Journal of Computer Science & Security
(IJCSS), vol. 13, no. 3, pp. 114–123, 2019.

[2] S. Almeida, A. C. R. Paiva, and A. Restivo, “Mutation-Based Web
Test Case Generation,” in Quality of Information and Communications
Technology, M. Piattini, P. Rupino da Cunha, I. García Rodríguez de
Guzmán, and R. Pérez-Castillo, Eds. Cham: Springer, 2019, pp. 339–
346.

[3] F. Almenar, A. I. Esparcia-Alcázar, M. Martínez, and U. Rueda,
“Automated testing of web applications with testar,” in Search Based
Software Engineering, F. Sarro and K. Deb, Eds. Cham: Springer, 2016,
pp. 218–223.

[4] A. Alsaedi, A. Alhuzali, and O. Bamasag, “Black-box fuzzing approaches
to secure web applications: Survey,” International Journal of Advanced
Computer Science and Applications, vol. 12, no. 5, 2021.

[5] ——, “Effective and scalable black-box fuzzing approach for modern
web applications,” Journal of King Saud University - Computer and
Information Sciences, vol. 34, no. 10, Part B, pp. 10 068–10 078, 2022.

[6] N. Alshahwan, M. Harman, A. Marchetto, and P. Tonella, “Improving
Web Application Testing using testability measures,” in 2009 11th IEEE
International Symposium on Web Systems Evolution. Edmonton, AB,
Canada: IEEE, Sep. 2009, pp. 49–58.



[7] A. Arcuri, “RESTful API Automated Test Case Generation with Evo-
Master,” ACM Transactions on Software Engineering and Methodology,
vol. 28, no. 1, pp. 1–37, Feb. 2019.

[8] V. Atlidakis, P. Godefroid, and M. Polishchuk, “RESTler : Stateful REST
API Fuzzing,” in 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE), 2019, pp. 748–758.

[9] A. Bainczyk, A. Schieweck, M. Isberner, T. Margaria, J. Neubauer,
and B. Steffen, “ALEX: Mixed-Mode Learning of Web Applications
at Ease,” in Leveraging Applications of Formal Methods, Verification
and Validation: Discussion, Dissemination, Applications, ser. LNCS,
T. Margaria and B. Steffen, Eds. Cham: Springer, 2016, vol. 9953, pp.
655–671.

[10] C. Beaman, M. Redbourne, J. D. Mummery, and S. Hakak, “Fuzzing vul-
nerability discovery techniques: Survey, challenges and future directions,”
Computers & Security, vol. 120, p. 102813, Sep. 2022.

[11] G. Benoit, “FuzzE 3.0,” https://github.com/snail-unamur/FuzzE.
[12] ——, “Fuzzing highly-configurable web user interface: a odoo case

study,” Master’s thesis, University of Namur, 2024.
[13] G. Benoit and X. Devroey, “Replication package of FuzzE, development

of a fuzzing approach for Odoo’s tours integration testing platform
resources (1.0.0),” https://doi.org/10.5281/zenodo.14605997, 2025.

[14] P. Bisht, T. Hinrichs, N. Skrupsky, and V. N. Venkatakrishnan, “Waptec:
whitebox analysis of web applications for parameter tampering exploit
construction,” in Proceedings of the 18th ACM Conference on Computer
and Communications Security, ser. CCS ’11. ACM, 2011, p. 575–586.

[15] P. Braione, G. Denaro, A. Mattavelli, and M. Pezzè, “SUSHI: A Test Gen-
erator for Programs with Complex Structured Inputs,” in Proceedings of
the 40th International Conference on Software Engineering: Companion
Proceeedings. ACM, May 2018, pp. 21–24, issue: i.

[16] M. Bruntink and A. van Deursen, “Predicting class testability using
object-oriented metrics,” in Source Code Analysis and Manipulation,
Fourth IEEE International Workshop on. IEEE, 2004, pp. 136–145.

[17] W. H. Burkhardt, “Generating test programs from syntax,” Computing,
vol. 2, no. 1, pp. 53–73, Mar. 1967.

[18] V. Dallmeier, B. Pohl, M. Burger, M. Mirold, and A. Zeller, “Webmate:
Web application test generation in the real world,” in 2014 IEEE Seventh
International Conference on Software Testing, Verification and Validation
Workshops, 2014, pp. 413–418.

[19] G. Denaro, A. Margara, M. Pezze, and M. Vivanti, “Dynamic Data Flow
Testing of Object Oriented Systems,” in 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering, vol. 1. IEEE, May
2015, pp. 947–958, iSSN: 02705257.

[20] P. Derakhshanfar, X. Devroey, A. Panichella, A. Zaidman, and
A. Van Deursen, “Generating Class-Level Integration Tests Using Call
Site Information,” IEEE Transactions on Software Engineering, vol. 49,
no. 4, pp. 2069–2087, Apr. 2023.

[21] X. Devroey, A. Gambi, J. P. Galeotti, R. Just, F. Kifetew, A. Panichella,
and S. Panichella, “JUGE: An infrastructure for benchmarking Java unit
test generators,” Software Testing, Verification and Reliability, vol. 33,
no. 3, p. e1838, May 2023.

[22] P. Di, B. Liu, and Y. Gao, “MicroFuzz: An Efficient Fuzzing Framework
for Microservices,” in Proceedings of the 46th International Conference
on Software Engineering: Software Engineering in Practice. Lisbon
Portugal: ACM, Apr. 2024, pp. 216–227.

[23] Z. El Idrissi, “Reverse engineering variability for configurable systems
using formal concept analysis: The odoo case study,” Master’s thesis,
University of Namur, 2022.

[24] G. Fraser and A. Arcuri, “EvoSuite: Automatic Test Suite Generation for
Object-Oriented Software,” in Proceedings of the 19th ACM SIGSOFT
symposium and the 13th European conference on Foundations of software
engineering - SIGSOFT/FSE ’11, ser. ESEC/FSE ’11. ACM Press,
2011, p. 416.

[25] A. Ganesh, K. Shanil, C. Sunitha, and A. Midhundas, “OpenERP/Odoo
- An Open Source Concept to ERP Solution,” in 2016 IEEE 6th
International Conference on Advanced Computing (IACC), 2016, pp.
112–116.

[26] V. Garousi, M. Felderer, and F. N. Kiluçaslan, “A survey on software
testability,” Information and Software Technology, vol. 108, pp. 35–64,
Apr. 2019.

[27] C. Holler, K. Herzig, and A. Zeller, “Fuzzing with Code Fragments,” in
21st USENIX Security Symposium (USENIX Security 12). Bellevue,
WA: USENIX Association, Aug. 2012, pp. 445–458.

[28] K. V. Hanford, “Automatic generation of test cases,” IBM Systems Journal,
vol. 9, no. 4, pp. 242–257, 1970.

[29] H. Liang, X. Pei, X. Jia, W. Shen, and J. Zhang, “Fuzzing: State of the
art,” IEEE Transactions on Reliability, vol. 67, no. 3, pp. 1199–1218,
2018.

[30] V. J. M. Manes, H. Han, C. Han, s. k. Cha, M. Egele, E. J. Schwartz,
and M. Woo, “The Art, Science, and Engineering of Fuzzing: A Survey,”
IEEE Transactions on Software Engineering, vol. 5589, no. c, 2019.

[31] K. Mao, M. Harman, and Y. Jia, “Sapienz: multi-objective automated
testing for Android applications,” Proceedings of the 25th International
Symposium on Software Testing and Analysis - ISSTA 2016, pp. 94–105,
2016, iSBN: 9781450343909.

[32] A. Memon, I. Banerjee, and A. Nagarajan, “GUI ripping: reverse
engineering of graphical user interfaces for testing,” in 10th Working
Conference on Reverse Engineering, 2003. WCRE 2003. Proceedings.
Victoria, BC, Canada: IEEE, 2003, pp. 260–269.

[33] A. Mesbah, E. Bozdag, and A. van Deursen, “Crawling ajax by inferring
user interface state changes,” in 2008 Eighth International Conference
on Web Engineering, 2008, pp. 122–134.

[34] S. Mouchawrab, L. C. Briand, and Y. Labiche, “A measurement
framework for object-oriented software testability,” Information and
Software Technology, vol. 47, no. 15, pp. 979–997, Dec. 2005.

[35] Odoo, “Testing odoo,” https://www.odoo.com/documentation/17.0/
developer/reference/backend/testing.html#integration-testing, 2024, last
access 15/02/2024.

[36] Odoo S.A., “Architecture odoo,” https://www.odoo.com/documentation/
17.0/developer/tutorials/server_framework_101/01_architecture.html,
2024, last access 12/05/2024.

[37] ——, “Open source ERP and CRM Odoo,” https://www.odoo.com/, 2024,
last access 13/09/2024.

[38] ——, “OWL framework,” https://odoo.github.io/owl/, 2024, last access
19/09/2024.

[39] M. Olsthoorn, A. van Deursen, and A. Panichella, “Generating highly-
structured input data by combining search-based testing and grammar-
based fuzzing,” in Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering. ACM, Dec. 2020, pp.
1224–1228.

[40] C. Pacheco and M. D. Ernst, “Randoop: Feedback-Directed Random
Testing for Java,” in Companion to the 22nd ACM SIGPLAN conference
on Object oriented programming systems and applications companion -
OOPSLA ’07, vol. 2. ACM Press, 2007, p. 815.

[41] R. Padhye, C. Lemieux, M. Papadakis, and Y. L. Traon, “Semantic
Fuzzing with Zest,” in Proceedings ofthe 28th ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis (ISSTA ’19), Beijing,
China, 2019, pp. 329–340.

[42] A. C. R. Paiva, A. Restivo, and S. Almeida, “Test case generation based
on mutations over user execution traces,” Software Quality Journal,
vol. 28, no. 3, pp. 1173–1186, Sep. 2020.

[43] A. Panichella, F. M. Kifetew, and P. Tonella, “Automated Test Case
Generation as a Many-Objective Optimisation Problem with Dynamic
Selection of the Targets,” IEEE Transactions on Software Engineering,
vol. 44, no. 2, pp. 122–158, Feb. 2018, iSBN: 0098-5589 VO - PP.

[44] T. Parr, The Definitive ANTLR 4 Reference: Building Domain-Specific
Languages. Pragmatic Bookshelf, 2013.

[45] M. Pezzè, K. Rubinov, and J. Wuttke, “Generating effective integration
test cases from unit ones,” Proceedings - IEEE 6th International
Conference on Software Testing, Verification and Validation, ICST 2013,
pp. 11–20, 2013, iSBN: 978-0-7695-4968-2.

[46] P. Purdom, “A sentence generator for testing parsers,” BIT Numerical
Mathematics, vol. 12, no. 3, pp. 366–375, Sep. 1972.

[47] S. Sherin, A. Muqeet, M. U. Khan, and M. Z. Iqbal, “QExplore: An
exploration strategy for dynamic web applications using guided search,”
Journal of Systems and Software, vol. 195, p. 111512, Jan. 2023.

[48] M. Vivanti, A. Mis, A. Gorla, and G. Fraser, “Search-based data-flow test
generation,” in 2013 IEEE 24th International Symposium on Software
Reliability Engineering (ISSRE). IEEE, Nov. 2013, pp. 370–379.

[49] T. E. Vos, P. M. Kruse, N. Condori-Fernández, S. Bauersfeld, and
J. Wegener, “Testar: Tool support for test automation at the user interface
level,” International Journal of Information System Modeling and Design
(IJISMD), vol. 6, no. 3, pp. 46–83, 2015.

[50] M. Wu, L. Jiang, J. Xiang, Y. Huang, H. Cui, L. Zhang, and Y. Zhang,
“One Fuzzing Strategy to Rule Them All,” in ICSE ’22: Proceedings of
the 44th International Conference on Software Engineering, 2022, pp.
1634 – 1645.

[51] A. Zeller, R. Gopinath, M. Böhme, G. Fraser, and C. Holler, “The fuzzing
book,” https://www.fuzzingbook.org/, 2024, last access 18/01/2024.


