SelfBehave, Generating a Synthetic
Behaviour-Driven Development Dataset Using
SELF-INSTRUCT

Martin Balfroid
NADI, University of Namur
Namur, Belgium
martin.balfroid @unamur.be

Manon Galloy
NADI, University of Namur
Namur, Belgium

Abstract—While state-of-the-art large language models (LLMs)
show great potential for automating various Behavioral-Driven
Development (BDD) related tasks, such as test generation, smaller
models depend on high-quality data, which are challenging to
find in sufficient quantity. To address this challenge, we adapt
the SELF-INSTRUCT method to generate a large synthetic dataset
from a small set of human-written high-quality scenarios. We
evaluate the impact of the initial seeded scenarios’ quality on the
generated scenarios by generating two synthetic datasets: one
from 175 high-quality seeds and one from 175 seeds that did not
meet all quality criteria. We performed a qualitative analysis using
state-of-the-art quality criteria and found that the quality of seeds
does not significantly influence the generation of complete and
essential scenarios. However, it impacts the scenarios’ capability
to focus on a single action and outcome and their compliance
with Gherkin syntactic rules. During our evaluation, we also
found that while raters agreed on whether a scenario was of
high quality or not, they often disagreed on individual criteria,
indicating a need for quality criteria easier to apply in practice.

Index Terms—Large Language Models (LLMs), behaviour-
driven development (BDD), self-instruct

I. INTRODUCTION

Abstraction via storytelling is powerful for sharing ideas
and thoughts. In software development, this is reflected in
user stories, which state features from the user’s point of
view to ensure clear communication among team members.
These stories are broken down into scenarios, which can
serve various purposes, like requirements engineering, feature
development prioritization, but also, acceptance testing with
concrete examples of how an application should behave [1], [2].
Among the different formalisms, Behavior-Driven Development
(BDD) uses the structured natural language Gherkin [3] to
define scenarios, which include the initial state (Given), actions
(When), and expected outcomes (Then). Listing 1 illustrates a

This research was supported by the ARIAC project (No. 2010235) funded
by the Service Public de Wallonie (SPW Recherche), and the SQUAL.AI
project (No. 2025/658876) supported by Wallonie-Bruxelles International
(WBI).

978-1-5386-5541-2/18/$31.00 ©2025 IEEE. This is the authors’ version. The
final version is published in the Proceedings of the 2025 IEEE International
Conference on Software Testing, Verification and Validation Workshops
(ICSTW), Naples, Italy.

Benoit Vanderose
NADI, University of Namur
Namur, Belgium
benoit.vanderose @unamur.be

Xavier Devroey
NADI, University of Namur
Namur, Belgium
xavier.devroey @unamur.be

scenario written in Gherkin, describing an account depositing
operation. Such scenarios serve as input for implementing tests
[4], [5], e.g., with Python’s behave or Java’s Cucumber. Despite
the gain of popularity over the last decades, many tasks relying
on BDDs remain manual.

Large Language Models (LLMs) can help perform various
software engineering tasks [6]. For instance, Karpurapu et al.
[7] evaluated the ability of LLMs to generate test code from
BDD scenarios and found promising results for state-of-the-art
LLMs. However, smaller models are not as good. Still, they are
attractive as they can easily be deployed in-house for privacy
concerns without demanding too much resources. Fine-tuning
them on a BDD scenario dataset generated by a state-of-the-art
LLM would put them on a par with the bigger models [8].
However, this requires a dataset with high-quality scenarios
- i.e. that are self-contained (complete), that do not contain
noise (essential), that focus on a single action and outcome
(singular), and adhere to Gherkin rules (integrous)- which is
scarce [9].

This paper focuses on the BDD dataset scarcity by adapting
the SELF-INSTRUCT [8] method to generate a synthetic dataset
from a smaller set of human-written scenarios. We evaluated
our approach to answer the following research questions:

RQ1 7o what extent does the quality of the seed scenarios
influence the quality of the scenarios generated?

RQ2 To what extent is the checklist for evaluating the Essential,
Singular, Complete, and Integrous criteria applicable to
automatically generated BDD scenarios?

For that, we generated two synthetic datasets containing
1,000 scenarios each: one from 175 high-quality scenarios
and one from 175 scenarios that did not necessarily meet
all criteria—each. After a manual analysis of the quality
of the generated scenarios, performed independently by the
two first authors, we found that the quality of the seed
scenarios has no significant influence on generating complete
and essential scenarios. However, quality does matter when
generating scenarios that focus on a single action and outcome
and respect the Gherkin syntactic rules. We also found that
while both raters agreed on whether a scenario is of high

Scenario: Deposit money
Given I have $100
When I deposit $50
Then I should have $150

Listing 1. Gherkin scenario for an account management system

TABLE I
EXCERPT FROM THE SCENARIO-LEVEL CRITERIA QUESTIONS IN THE
CHECKLIST BY OLIVEIRA ET AL. [14]

ID | Question Attribute

3 Does the scenario carry all the information needed | Complete
to understand it?

4 Does the scenario have steps that can be removed | Essential
without affecting its understanding?

6 Can the scenario single action be identified on its Singular
title and match what the scenario is doing?

7 Can the scenario outcome or verifications be identi- | Singular
fied on its title and match what the scenario is doing?

8 Does the scenario respect the meaning of Gherkin | Integrous
keywords and their natural order?

quality, they often disagreed on individual criteria, which
signals a need to refine the checklist for evaluating the
criteria. Our modified implementation of SELF-INSTRUCT and
our complete replication package are available on Zenodo
https://zenodo.org/records/14054404 [10].

II. BACKGROUND AND RELATED WORK

A. Behavioral-Driven Development

BDDs [1] capture what is expected of the software in the
form of scenarios. A feature (i.e., a user story in Agile) is a
set of scenarios that describe its different aspects [11]. This
work focuses on Gherkin [12], a language commonly used
to represent scenarios (e.g., Listing 1). With the development
of Natural Language Processing (NLP) and machine learning,
BDD has gained popularity as it can be used as an intermediate
representation in model-based testing [5], or as input for
various automated software engineering tasks like test case
generation [4], [7], [13]. For instance, Storer and Bob [13] au-
tomatically generate step implementation functions from BDD
steps. They use NLP to parse and interpret Gherkin scenarios
from GitHub, focusing on Python for step implementations.
While their approach shows potential, it achieves a low success
rate without human intervention, likely due to their reliance
on NLP methods that do not fully capture natural language’s
complexity.

Among the eight criteria defined by Oliveira et al. [14], we
selected those applicable at the scenario level, listed in Table I
with their corresponding questions. The others apply either at a
more granular level (step) or at a higher level (feature), which
falls outside the scope of our study.

B. Large Language Models

Recent NLP models, like Large Language Models (LLMs),
dramatically improve performance for NLP-based tasks. For
BDDs, state-of-the-art LLMs show great promise in generating
nearly flawless BDD acceptance tests [7]. However, smaller

models like LLama2-13B [15], while advantageous due to
their open weights for privacy and lower resource requirements,
still leave room for improvement [7]. Garcia et al. [16]
evaluated the extent to which ChatGPT is a helpful assistant in
implementing end-to-end Android app test scenarios specified
in Gherkin. They observed that even if it requires a manual
step to fix generated tests manually, LLMs reduce total unit
test writing time without compromising reliability.

C. Generating synthetic dataset

SELF-INSTRUCT [8] is an iterative technique designed to
generate a large and diverse dataset from a small set of
manually written task prompt' such as “Generate a Python
implementation of the quick sort algorithm”. It does so by
iteratively generating new task prompts and their corresponding
input-output pairs using a large language model (LLM) to build
upon both the initial human-written examples and previously
generated prompts. To our knowledge, this method has not
yet been adapted for generating BDD synthetic datasets. In a
nutshell, the process includes a three-step loop (See Figure 1);
the loop continues until the dataset reaches the desired size.

(1) Task prompt generation: Generate new task prompts
in a few-shot manner using a pool of human-written examples
(and, in later iterations, synthetic examples) with the following
prompt:

Come up with a series of tasks:

Task 1: <human-written task 1>
Task 2: <human-written task 2>
Task 7: <LLM-generated task 1>
Task 8: <LLM-generated task 2>
Task 9:

Each prompt includes eight examples: six human-written and
two LLM-generated, ensuring a balance between quality and
diversity. In the first iteration, all tasks are human-written. It
uses a Simple colon [17] prompt format, implicitly prompting
the model to generate the next tasks sequentially after the
colon. The model continues until reaching its token limit or
producing up to seven new tasks (i.e., generating Task 9 to
Task 15).

(2) Input-Output pairs generation: The generation of
input-output pairs follows two different strategies depending on
whether the output is a class label. An output-first approach is
used for classification tasks to prevent label bias, as models tend
to generate inputs skewed toward a particular class. Conversely,
non-classification tasks adopt an input-first approach, where
outputs are conditioned on inputs.

A few-shot prompt template is used with 12 classifications
and 19 non-classification task prompts as a demonstration.
Below is a shortened version:

Can the following task be regarded as a classification task
with finite output labels?

Task: Given my personality and the job, tell me if I would
be suitable.
Is it classification? Yes

IThe standard term is “instruction”, but we use the term task prompt instead
to avoid confusion with code instructions.

foool

Task: Given a set of numbers, find all possible subsets
that sum to a given number.
Is it classification? No

Task: <target task>

For classification tasks, the following template prompts the
model to generate input-output pairs, starting with the outputs
to guarantee that all the output distribution is covered. Below
is a shortened version:

Given the classification task definition and the class
labels, generate an input that corresponds to each of
the class labels. If the task doesn’t require input,
just generate the correct class label.

Task: Classify the sentiment of the sentence into positive,
negative, or mixed.

Class label: Mixed

Sentence: I enjoy [...] but their service is too slow.
Class label: Positive

Sentence: I had a great day today. [...]

Class label: Negative

Sentence: I was really disappointed [...]

fooold

Task: Detect if the Reddit thread contains hate speech.
Class label: Hate Speech
Thread: [...] stupid [...]
Class label: Not Hate Speech
Thread: The best way to cook a steak on the grill.

Task: <target task>

For non-classification tasks, we generate the input, if any,
before the output. Below is a shortened version:

Come up with examples for the following tasks. Try to
generate multiple examples when possible. If the task
doesn’t require additional input, you can generate the
output directly.

Task: Which exercises are best for reducing belly fat at
home?

Output:

- Lying Leg Raises

- Leg In And Out

- Plank

— Side Plank

- Sit-ups

foool

Task: Sort the given list ascendingly.
Example 1

List: [10, 92, 2, 5, -4, 92, 5, 101]
Output: [-4, 2, 5, 5, 10, 92, 92, 101
Example 2

Input 2 - List: [9.99, 10, -5, -1000, 5e6, 999
Output: [-1000, -5, 9.99, 10, 999, 5e6]
Task: <target task>

(3) Filtering and Postprocessing: A multi-step filtering
process is applied before integrating new fask prompts into
the pool to ensure high quality and diversity. This process
consists of the following steps: (i) a new task prompt is added
if it is at least 30% unique (ROUGE-L [18] score below 0.7);
(ii) Task prompts containing specific keywords (e.g., image,
picture) are excluded; (iii) exact duplicates of input-output pairs
are removed; (iv) pairs where the same input but conflicting
outputs are removed; (v) invalid generations are identified and
removed based on heuristics, including task prompts that are

excessively short or long and Outputs that are mere repetitions
of the input.

This filtering process ensures that only diverse, high-quality,
and logically consistent task prompts and input-output pairs
are kept in the dataset.

III. APPROACH

A. Synthetic BDD Dataset Generation

We adapt the SELF-INSTRUCT method to generate a synthetic
dataset of BDD acceptance test scenarios in Gherkin. We use
the following template where the rask prompts instruct the
model to generate Python steps for a given scenario using the
behave framework:

Task: Generate a Python implementation of the step
functions for the following Gherkin scenario using the
behave BDD testing framework: < >

Output: <STEPS>

As code generation is not a classification task, we use an input-
first approach with the BDD scenario directly embedded in the
task prompt, like so:

Come up with examples for the following tasks. Try to
generate multiple examples when possible. If the task
doesn’t require additional input, you can generate the
output directly.

Task 1: Generate a Python implementation of the step
functions for the following Gherkin scenario using the
behave BDD testing framework:

Scenario: Add Product to Cart
Given I am on the Blouse product page
When I click add to cart
Then the product should be added to the cart
Output 1:
@given(u’I am on the Blouse product page’)
def step_impl (context) :
context.page_object =
driver)
assert context.page_object.
is_product_page_displayed(),
not displayed"

ProductPageActions (context.

"Product page is
[...]

Task 2: Generate a Python implementation [...]
Output 2: [...]

[oool

The filtering mechanism in step (4) removes ill-formed and
invalid instances before the next iteration.

B. Implementation and Underlying LLM

We rely on the SELF-INSTRUCT implementation of Wang
et al. [8]. We used the Mixtral-8x7b-Instruct-v0.1
LLM for several reasons: it has open weights, which enforces
open science and enhances the reproducibility of our research;
it is also qualitatively similar to GPT-3.5 [19], which was
the best LLM at the time of performing this study; Finally,
most companies, some also developing open weights LLMs
like Meta, explicitly prohibit using their model outputs to train
models from other companies. We did not find such a restriction
in Mistral’s Terms of Service, which is promising for our kind
of research.

175 initial tasks LLM

>
S
Task pool

Loop until reaching

(1) Generate up to 7
new task prompts or
reaching token limit

6 human-written
2 LLM-generated

Task prompt
Give me a quote [...]

Yes

Input: [...] women have the right to choose [...]

(2) Generate output
first

target size Task prompt: Find out if the given text is in
favor of or against abortion.
Class Label: Pro-abortion
(3) Filter <

LLM

Task prompt: Give me a quote from a famous
person on this topic.

Input: The importance of being honest.
Output: Honesty is the first chapter in the book
of wisdom. - Thomas Jefferson

(2) Generate input
first

Fig. 1. SELF-INSTRUCT process [8]

IV. EVALUATION SETUP

Our primary focus is on evaluating the quality of the
generated scenarios using four of the scenario-level quality
criteria from Oliveira et al. [14] (described in Table I). For
that, we need to assess how the initial scenarios’ quality could
influence the generated scenarios’ quality (RQ1). Collaterally,
to the best of our knowledge, no other study has assessed the
applicability of Oliveira’s criteria to automatically generated
BDD scenarios (RQ2). To focus clearly on the scenario scope,
we have left analysis of the generated code, and analysis at
the step and feature level for future work.

A. Initial BDD Scenarios Seed Collection

We selected 39 repositories that use the behave framework,
starting with those used by Storer et al. [13], covering diverse
domains (Cucumber, Blender, ...). From each repository, the
first author selected at least one scenario that either met all
quality criteria of Table I or failed at least one of them, with
an additional validation made by the second author. In Table II,
we provide the final list of GitHub repositories curated for the
seed datasets.

From the 39 identified repositories, we manually curated two
seed datasets of 175 BDD scenarios each: (i) High-Quality Seed
Dataset (HS), that consists exclusively of scenarios that meet all
criteria in Table I. And (ii) Mixed-Quality Seed Dataset (MS),
containing a mix of high-quality and lower-quality scenarios.
It was created by randomly replacing 70 high-quality scenarios
with lower-quality ones (i.e., not meeting at least one of the
quality criteria), resulting in a 60-40 ratio. This balance provides
a realistic mix of quality while ensuring that the lower-quality
scenarios have sufficient influence without dominating. In short,

the idea is to see whether a few low-quality scenarios can affect
the overall quality.

For comparability, we chose the same size as prior work on
SELF-INSTRUCT. This number is a good tradeoff between an
adequate number of scenarios and the effort required for review.
Future work should explore whether varying this number
impacts the diversity and stability of the generated results.

B. Synthetic Datasets Generation

The SELF-INSTRUCT method was adapted to generate
two new synthetic datasets: High-Quality Seeded Generated
Dataset (HG) (generated from HS) and Mixed-Quality Seeded
Generated Dataset (MG) (generated from MS). For each of
the two seed datasets, twenty new scenarios are generated per
iteration until the target of 1,000 new scenarios is reached. The
filtering mechanism removed ill-formed and invalid instances.

C. Data Analysis

Once the synthetic datasets were generated, the two first
authors evaluated the quality of their BDD scenarios, based
on Table I (RQ1). A scenario is considered of high quality if
all four criteria are met. In case of disagreement, the two last
authors evaluated the results, and a consensus was reached. We
randomly selected a sample of 286 scenarios for each synthetic
dataset for manual inspection. This sample size (n = 286) was
calculated using Yamane’s formula [20], with a total population
of N = 1,000 and a margin of error of e = 5%. We chose this
margin of error as it is a standard trade-off between practicality
and accuracy. We generate more scenarios than we evaluate to
ensure greater diversity in the dataset and a more representative
sample. This approach also allows for a statistically reliable
evaluation based on random sampling rather than evaluating a

TABLE II
GITHUB REPOSITORIES CURATED FOR THE SEED DATASETS.

Repository Repository Repository
mauriciochaves/python_workspace pytroll/satpy mezuro/kalibro_client_py
walterdolce/python-package-license-generator nzabus/prj_bdd kazuho/quic-perf-metrics
Grigorevskiy/RaceAutomationPython jeanmichelem/tdd PrateekVachher/WanderLust-TheTravelApp
bbvch/brightness-zoo lukelOx/malunas kate777k/suit-test
florinn/veryfay-python migibert/pynetlib mc706/prog-strat-game
chrdavid/superlists Winnetou/ManuTironis timbortnik/behave_web2
ivanoril/smoke_test_webstation anaplian/tinylog softwarefactory-project/rdopkg
Jyotiranjan767/59_effetctive pcn/trte ilanasufrin/nyu-devops—homework-1
peter—evolent/python-testing-examples aloetesting/aloe dev-lusaja/cucumber-python
vishalm/behave_parallel_demo rbob96/Banking-BDD behave-restful/behave-restful
spyountech/behave-webdriver mmguzman/Behave behave/behave.example
AndreasAugustin/Gherkin-Demos-python radish-bdd/radish machzgcqg/Python_Page_Object
nikileshsa/hyperledger_pluggable_datastore behave/behave pcarney8/python-amg-multi-deploy-example

77 Essential
Singular

7 Essential
Singular

Complete
Integrous

Complete
Integrous

(a) HG Synthetic Dataset: Scenarios (b) MG Synthetic Dataset: Scenar-
generated from high quality scenar- ios generated from mixed quality
ios scenarios

Fig. 2. Classification of the synthetic scenarios according to the quality criteria

fixed set of generated scenarios. It also allows future work to
be conducted without regenerating a new dataset.

To assess the level of agreement between the two first
authors (RQ2), we employed Cohen’s Kappa coefficient
(k) [21]. As Kk is an estimate derived from a sample, we
calculate the confidence interval to understand its reliability.
We opted for a confidence level of 95%, commonly used in
research. Additionally, we interpreted the « values according
to the widely accepted guidelines established by Landis and
Koch [22]: Kk < 0 as poor; O < Kk < 0.21 as slight;
0.21 < k < 0.41 as fair; 0.41 < k < 0.61 as moderate;
0.61 < Kk < 0.81 as substantial; and 0.81 < k as almost
perfect. To determine whether a criterion is more frequently
met in MG or HG, we use Fisher’s exact test [23] (with
a = 0.05) with Odds Ratios (OR) (95% confidence interval,
CI) for effect size.

V. EVALUATION RESULTS
A. Seed Quality Influence (RQI1)

In the MG synthetic dataset (Figure 2b), 117 out of 286
scenarios (41%) were of high quality. An additional 157
scenarios (55%) met at least one quality criterion. Among
the criteria, Integrous was the least frequently met, with 136
scenarios (48%) satisfying it, followed by Singular with 163
scenarios (57%), Essential with 234 scenarios (82%), and
Complete, which was the most frequently met criterion with

TABLE III
COHEN’S KAPPA VALUES FOR HG

Criterion Lower Bound Kappa Upper Bound
Essential 0.34 (Fair) 0.46 (Moderate) 0.59 (Moderate)
Singular 0.35 (Fair) 0.47 (Moderate) 0.59 (Moderate)
Complete 0.13 (Slight) 0.37 (Fair) 0.60 (Fair)
Integrous -0.04 (Poor) 0.15 (Slight) 0.35 (Slight)
High-Quality | 0.58 (Moderate) | 0.67 (Substantial) | 0.76 (Substantial)

262 scenarios (92%). Thirteen scenarios (5%) did not meet
any criteria.

In the HG synthetic dataset (Figure 2a), 184 out of 286
scenarios (64%) were of high quality. An additional 86
scenarios (30%) met at least one quality criterion. Among
the criteria, Singular was the least frequently met, with 218
scenarios (76%) satisfying it, followed by Integrous with 233
scenarios (81%), Essential with 242 scenarios (85%), and
Complete, which was the most frequently met criterion with
257 scenarios (90%). Sixteen scenarios (6%) did not meet any
criteria. Using Fisher’s exact test across the two datasets, no
statistically significant associations were found for the Essential
(p = 0.434) and Complete (p = 0.564) criteria. Scenarios
generated from high-quality seed scenarios more frequently
met the Singular criterion (p < 0.001; OR (95% CI) = [1.66,
3.53]) and the Integrous criterion (p < 0.001; OR (95% CI) =
[3.27, 7.22]).

Regarding the influence of the seed quality (RQ1),
including both the seeded and generated scenarios, we find
that in the HS+HG dataset, 359 out of 461 scenarios (78%)
are of high quality. For the MS+MG dataset, only 222 out of
461 scenarios (48%) are of high quality. Overall, the scenarios
in HG are more likely to meet all criteria (p < 0.001; OR
(95% CI) = [1.83, 3.71]) compared to those in MG. When
combining both seeded and generated scenarios, the HS+HG
dataset was even more likely to meet all criteria (p < 0.001;
OR (95% CI) = [2.82, 5.1]) than the MS+MG dataset.

B. Quality Criteria Applicability (RQ2)

Regarding the applicability of the quality criteria (RQ?2),
as can be seen from Tables III and IV, for both datasets, the
raters agreed substantially if a scenario is of high quality or
not. Interestingly, reviewers tend to be on the same page when
a scenario is not of high quality, but usually not for the same

TABLE IV

COHEN’S KAPPA VALUES FOR MG

Criterion Lower Bound Kappa Upper Bound
Essential 0.15 (Slight) 0.27 (Fair) 0.39 (Fair)
Singular 0.42 (Moderate) 0.52 (Moderate) 0.63 (Substantial)
Complete 0.21 (Fair) 0.45 (Moderate) 0.69 (Substantial)
Integrous 0.43 (Moderate) 0.53 (Moderate) 0.63 (Substantial)
High-Quality | 0.61 (Substantial) | 0.69 (Substantial) | 0.78 (Substantial)

reason as the inter-raters agreement only ranges from slight to
moderate for criteria taken individually. This signals a need to
refine the checklist from Oliveira et al. [14] for automatically
generated BDDs, which we discuss in Section VI.

VI. DISCUSSION
A. Seed Quality Influence

The results indicate that the quality of the seeded scenarios
has no significant influence on the Essential and Complete
criteria. However, it has a significant influence on the Integrous
and Singular criteria, with the impact being more pronounced
for Integrous, as shown by the higher odds ratios for Integrous
compared to Singular. Supporting this, in the MG dataset, the
most frequent combination (74 scenarios - 26%) was scenarios
that were Essential and Complete but neither Singular nor
Integrous. In contrast, the HG dataset most frequently contained
(23 scenarios - 8%) Essential, Complete, and Integrous but
not Singular scenarios, while Essential and Complete but
neither Singular nor Integrous scenario were observed 10 times
(3%). These findings suggest that curating for seeded scenarios
that focus on a single action and outcome (Singular) and,
more significantly, that adhere to Gherkin rules (Integrous)
substantially influences the quality of the generated scenarios.
Note that we evaluated a sample of 286 out of the 1,000
generated scenarios, which results in a 5% margin of error
based on the widely used Yamane’s formula. This poses a threat
to conclusion validity. Additionally, we only tested scenarios
generated by a specific model and prompt, which may limit how
well these results generalise (external validity). We have a mix
of scenarios from diverse domains that might be incompatible,
threatening external validity (generalisability). Similarly, we
did not rigorously track the distribution of scenarios within each
repository, which could impact the degree of representativeness
of the dataset, introducing a construct validity threat. Thus,
future work should include more rigorous tracking of scenario
distribution to mitigate these problems. Note that selecting
the initial scenarios manually could also have impacted the
diversity and quality of the seeded scenarios, which poses a
potential threat to internal validity

B. Quality Criteria

The inter-rater agreement varied across quality criteria, with
Essential showing only fair agreement in MG. This may be
due to different interpretations between raters. For example,
in HG43 (see Listing 2), one rater considered “seeing an edit
option” redundant, while the other did not. On the one hand,
Complete and Integrous had only fair and slight agreement,

Scenario:
Given a user is logged in
When they visit the profile page
Then they should see their profile information
And they should see an option to edit their profile
information
And
When they click on the edit button
Then they should be taken to the edit profile page

Listing 2. HG43

Scenario: a user can log in with their credentials
Given I am a user with username "testuser" and password
"testpassword"
When I log in with my credentials
Then I am logged in with my username "testuser" and
password "testpassword"

Listing 3. HG214

respectively, in MG, highlighting the need for more consistent
evaluation standards. On the other hand, Singular showed
moderate agreement in both datasets, likely indicating that this
criterion provides less room for interpretation. Clear guidelines
are needed to reduce subjectivity, and implementing a Likert
Scale rather than a binary choice might better capture nuanced
differences in interpretation. This threatens both construct
and internal validity, as criterion interpretation inconsistencies
impact our quality assessments’ reliability. We mitigated this
threat by having the two last authors settle disagreements by
consensus.

We observed issues in the generated scenarios that stem
from a lack of common sense or awareness of security implica-
tions—issues not captured by our current checklist. For instance,
LLM-generated scenarios sometimes expose personal data or
compromise security in ways a human developer typically
avoids. HS68 and HS67 reveal an actual email address, while
HS214 (see Listing 3) and HS218 include assertions requiring
exposed passwords, posing clear security risks. Additionally,
some scenarios contained incorrect assertions (e.g., MG223
and HG127) or whimsical behaviours, such as MG243, where
“hello world” disappears when a file is closed. Addressing
these issues would require adapting evaluation criteria to focus
on LLM biases.

Certain scenarios, like HG207, HG239, HG240, MG105,
and MG126, meet all formal criteria but are essentially mean-
ingless or degenerate. These scenarios highlight limitations in
the criteria, as they formally comply without adding practical
value. Another issue is overfitting specific seed examples,
causing generated scenarios to mimic unusual phrasing from
the seed scenarios. For instance, names like Edith and Francis,
seen in MG137 and MG169, can be traced back to MS54
and MS58, suggesting that these scenarios were generated by
closely following the seeded scenarios rather than producing
genuinely varied examples.

VII. CONCLUSION

In this study, we demonstrated the applicability of the
SELF-INSTRUCT method to generate synthetic BDD scenarios.

We evaluated the influence of seed scenario quality on the
generation using state-of-the-art quality criteria. Our findings
indicate that, while Essential and Complete criteria were
unaffected, Integrous and Singular criteria showed a significant
influence, highlighting that carefully curated seed scenarios
matter. We also showed that some criteria were ambiguous,
affecting consistency in ratings. Additionally, the current
checklist does not fully address specific issues found in LLM-
generated scenarios, such as errors in basic logic or security
risks. Some of these problems may also be due to the model
itself.

Our future work includes refining the checklist to capture
issues unique to LLMs better and be more resilient to
subjectivity. One promising avenue is the so-called LLM as
judge, which asks an LLM to do the evaluation. Although this
might not be as good as humans, some large models could
be an acceptable substitute, as they usually align with human
preferences during training. We will also enhance the approach
to generating the corresponding test code.

REFERENCES

[1] D. North, “Introducing BDD,” Better Software, 2006.

[2] M. Utting and B. Legeard, Practical Model-Based Testing - A Tools
Approach. Morgan Kaufmann, 2007.

[3] The Cucumber Open Source Project, “Cucumber,” 2014.

[4] N. Li, A. Escalona, and T. Kamal, “Skyfire: Model-Based Testing with

Cucumber,” in 2016 IEEE International Conference on Software Testing,

Verification and Validation (ICST), pp. 393-400, IEEE, Apr. 2016.

F. C. Ferrari, V. H. S. Durelli, S. F. Andler, J. Offutt, M. Saadatmand, and

N. Miillner, “On transforming model-based tests into code: A systematic

literature review,” Softw. Test. Verification Reliab., vol. 33, no. 8, 2023.

[6] A. Fan, B. Gokkaya, M. Harman, M. Lyubarskiy, S. Sengupta, S. Yoo, and

J. M. Zhang, “Large Language Models for Software Engineering: Survey

and Open Problems,” in 2023 IEEE/ACM International Conference on

Software Engineering: Future of Software Engineering (ICSE-FoSE),

pp. 31-53, May 2023.

S. Karpurapu, S. Myneni, U. Nettur, L. S. Gajja, D. Burke, T. Stiechm,

and J. Payne, “Comprehensive evaluation and insights into the use of

large language models in the automation of behavior-driven development

acceptance test formulation,” IEEE Access, vol. 12, 2024.

Y. Wang, Y. Kordi, S. Mishra, A. Liu, N. A. Smith, D. Khashabi,

and H. Hajishirzi, “Self-instruct: Aligning language models with self-

generated instructions,” in Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers),

pp. 13484-13508, 2023.

[9] V. Cosentino, J. L. C. Izquierdo, and J. Cabot, “Findings from github:
Methods, datasets and limitations,” in IEEE/ACM 13th Working Con-
ference on Mining Software Repositories (MSR), pp. 137-141, May
2016.

[7

—

[8

[t}

[10]

(1]

[12]

[13]

[14]

[15]

(16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

M. Galloy, “Selfbehave: Generating a behaviour-driven development
dataset using the self-instruct method,” Master’s thesis, University of
Namur, 2024.

C. Solis and X. Wang, “A Study of the Characteristics of Behaviour
Driven Development,” in 2011 37th EUROMICRO Conference on
Software Engineering and Advanced Applications, (Oulu, Finland),
pp- 383-387, IEEE, Aug. 2011.

SmartBear Software, “Cucumber documentation.” https://cucumber.io/
docs/cucumber/. last accessed 08/11/2024.

T. Storer and R. Bob, “Behave nicely! automatic generation of code for
behaviour driven development test suites,” in 19th International Working
Conference on Source Code Analysis and Manipulation, SCAM 2019,
Cleveland, OH, USA, September 30 - October 1, 2019, pp. 228-237,
IEEE, 2019.

G. Oliveira, S. Marczak, and C. Moralles, “How to evaluate BDD
scenarios’ quality?,” in Proceedings of the XXXIII Brazilian Symposium
on Software Engineering, pp. 481-490, 2019.

H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaeli,
N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale, D. Bikel, L. Blecher,
C. Canton-Ferrer, M. Chen, G. Cucurull, D. Esiobu, J. Fernandes,
J. Fu, W. Fu, B. Fuller, C. Gao, V. Goswami, N. Goyal, A. Hartshorn,
S. Hosseini, R. Hou, H. Inan, M. Kardas, V. Kerkez, M. Khabsa,
1. Kloumann, A. Korenev, P. S. Koura, M. Lachaux, T. Lavril, J. Lee,
D. Liskovich, Y. Lu, Y. Mao, X. Martinet, T. Mihaylov, P. Mishra,
I. Molybog, Y. Nie, A. Poulton, J. Reizenstein, R. Rungta, K. Saladi,
A. Schelten, R. Silva, E. M. Smith, R. Subramanian, X. E. Tan, B. Tang,
R. Taylor, A. Williams, J. X. Kuan, P. Xu, Z. Yan, 1. Zarov, Y. Zhang,
A. Fan, M. Kambadur, S. Narang, A. Rodriguez, R. Stojnic, S. Edunov,
and T. Scialom, “Llama 2: Open foundation and fine-tuned chat models,”
CoRR, vol. abs/2307.09288, 2023.

B. Garcia, M. Leotta, F. Ricca, and J. Whitehead, “Use of chatgpt as an
assistant in the end-to-end test script generation for android apps,” in
Proceedings of the 15th ACM International Workshop on Automating
Test Case Design, Selection and Evaluation, pp. 5-11, 2024.

L. Reynolds and K. McDonell, “Prompt programming for large language
models: Beyond the few-shot paradigm,” in Extended Abstracts of the
2021 CHI Conference on Human Factors in Computing Systems, pp. 1-7,
2021.

C.-Y. Lin and F. J. Och, “Automatic evaluation of machine translation
quality using longest common subsequence and skip-bigram statistics,”
in Proceedings of the 42nd annual meeting of the association for
computational linguistics (ACL-04), pp. 605-612, 2004.

W.-L. Chiang, L. Zheng, Y. Sheng, A. N. Angelopoulos, T. Li, D. Li,
H. Zhang, B. Zhu, M. Jordan, J. E. Gonzalez, and I. Stoica, “Chatbot
arena: An open platform for evaluating llms by human preference,” 2024.
C. Uakarn, K. Chaokromthong, and N. Sintao, “Sample size estimation
using yamane and cochran and krejcie and morgan and green formulas
and cohen statistical power analysis by g*power and comparisons,” Apheit
International Journal, vol. 10, December 2021.

M. L. McHugh, “Interrater reliability: the kappa statistic,” Biochemia
medica, vol. 22, no. 3, pp. 276-282, 2012.

J. Landis, “The measurement of observer agreement for categorical data,”
Biometrics, 1977.

R. A. Fisher, “On the Interpretation of x2 from Contingency Tables, and
the Calculation of P,” 1922.

